zopfli/squeeze.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
//! The squeeze functions do enhanced LZ77 compression by optimal parsing with a
//! cost model, rather than greedily choosing the longest length or using a single
//! step of lazy matching like regular implementations.
//!
//! Since the cost model is based on the Huffman tree that can only be calculated
//! after the LZ77 data is generated, there is a chicken and egg problem, and
//! multiple runs are done with updated cost models to converge to a better
//! solution.
use alloc::vec::Vec;
use core::cmp;
#[cfg(feature = "std")]
use log::{debug, trace};
use crate::{
cache::Cache,
deflate::{calculate_block_size, BlockType},
hash::{ZopfliHash, HASH_POOL},
lz77::{find_longest_match, LitLen, Lz77Store},
symbols::{get_dist_extra_bits, get_dist_symbol, get_length_extra_bits, get_length_symbol},
util::{ZOPFLI_MAX_MATCH, ZOPFLI_NUM_D, ZOPFLI_NUM_LL, ZOPFLI_WINDOW_MASK, ZOPFLI_WINDOW_SIZE},
};
const K_INV_LOG2: f64 = core::f64::consts::LOG2_E; // 1.0 / log(2.0)
#[cfg(not(feature = "std"))]
#[allow(unused_imports)] // False-positive
use crate::math::F64MathExt;
/// Cost model which should exactly match fixed tree.
fn get_cost_fixed(litlen: usize, dist: u16) -> f64 {
let result = if dist == 0 {
if litlen <= 143 {
8
} else {
9
}
} else {
let dbits = get_dist_extra_bits(dist);
let lbits = get_length_extra_bits(litlen);
let lsym = get_length_symbol(litlen);
// Every dist symbol has length 5.
7 + (lsym > 279) as usize + 5 + dbits + lbits
};
result as f64
}
/// Cost model based on symbol statistics.
fn get_cost_stat(litlen: usize, dist: u16, stats: &SymbolStats) -> f64 {
if dist == 0 {
stats.ll_symbols[litlen]
} else {
let lsym = get_length_symbol(litlen);
let lbits = get_length_extra_bits(litlen) as f64;
let dsym = get_dist_symbol(dist);
let dbits = get_dist_extra_bits(dist) as f64;
lbits + dbits + stats.ll_symbols[lsym] + stats.d_symbols[dsym]
}
}
#[derive(Default)]
struct RanState {
m_w: u32,
m_z: u32,
}
impl RanState {
fn new() -> RanState {
RanState { m_w: 1, m_z: 2 }
}
/// Get random number: "Multiply-With-Carry" generator of G. Marsaglia
fn random_marsaglia(&mut self) -> u32 {
self.m_z = 36969 * (self.m_z & 65535) + (self.m_z >> 16);
self.m_w = 18000 * (self.m_w & 65535) + (self.m_w >> 16);
(self.m_z << 16).wrapping_add(self.m_w) // 32-bit result.
}
}
#[derive(Copy, Clone)]
struct SymbolStats {
/* The literal and length symbols. */
litlens: [usize; ZOPFLI_NUM_LL],
/* The 32 unique dist symbols, not the 32768 possible dists. */
dists: [usize; ZOPFLI_NUM_D],
/* Length of each lit/len symbol in bits. */
ll_symbols: [f64; ZOPFLI_NUM_LL],
/* Length of each dist symbol in bits. */
d_symbols: [f64; ZOPFLI_NUM_D],
}
impl Default for SymbolStats {
fn default() -> SymbolStats {
SymbolStats {
litlens: [0; ZOPFLI_NUM_LL],
dists: [0; ZOPFLI_NUM_D],
ll_symbols: [0.0; ZOPFLI_NUM_LL],
d_symbols: [0.0; ZOPFLI_NUM_D],
}
}
}
impl SymbolStats {
fn randomize_stat_freqs(&mut self, state: &mut RanState) {
fn randomize_freqs(freqs: &mut [usize], state: &mut RanState) {
let n = freqs.len();
let mut i = 0;
let end = n;
while i < end {
if (state.random_marsaglia() >> 4) % 3 == 0 {
let index = state.random_marsaglia() as usize % n;
freqs[i] = freqs[index];
}
i += 1;
}
}
randomize_freqs(&mut self.litlens, state);
randomize_freqs(&mut self.dists, state);
self.litlens[256] = 1; // End symbol.
}
/// Calculates the entropy of each symbol, based on the counts of each symbol. The
/// result is similar to the result of length_limited_code_lengths, but with the
/// actual theoretical bit lengths according to the entropy. Since the resulting
/// values are fractional, they cannot be used to encode the tree specified by
/// DEFLATE.
fn calculate_entropy(&mut self) {
fn calculate_and_store_entropy(count: &[usize], bitlengths: &mut [f64]) {
let n = count.len();
let sum = count.iter().sum();
let log2sum = (if sum == 0 { n } else { sum } as f64).ln() * K_INV_LOG2;
for i in 0..n {
// When the count of the symbol is 0, but its cost is requested anyway, it
// means the symbol will appear at least once anyway, so give it the cost as if
// its count is 1.
if count[i] == 0 {
bitlengths[i] = log2sum;
} else {
bitlengths[i] = log2sum - (count[i] as f64).ln() * K_INV_LOG2;
}
// Depending on compiler and architecture, the above subtraction of two
// floating point numbers may give a negative result very close to zero
// instead of zero (e.g. -5.973954e-17 with gcc 4.1.2 on Ubuntu 11.4). Clamp
// it to zero. These floating point imprecisions do not affect the cost model
// significantly so this is ok.
if bitlengths[i] < 0.0 && bitlengths[i] > -1E-5 {
bitlengths[i] = 0.0;
}
debug_assert!(bitlengths[i] >= 0.0);
}
}
calculate_and_store_entropy(&self.litlens, &mut self.ll_symbols);
calculate_and_store_entropy(&self.dists, &mut self.d_symbols);
}
/// Appends the symbol statistics from the store.
fn get_statistics(&mut self, store: &Lz77Store) {
for &litlen in &store.litlens {
match litlen {
LitLen::Literal(lit) => self.litlens[lit as usize] += 1,
LitLen::LengthDist(len, dist) => {
self.litlens[get_length_symbol(len as usize)] += 1;
self.dists[get_dist_symbol(dist)] += 1;
}
}
}
self.litlens[256] = 1; /* End symbol. */
self.calculate_entropy();
}
fn clear_freqs(&mut self) {
self.litlens = [0; ZOPFLI_NUM_LL];
self.dists = [0; ZOPFLI_NUM_D];
}
}
fn add_weighed_stat_freqs(
stats1: &SymbolStats,
w1: f64,
stats2: &SymbolStats,
w2: f64,
) -> SymbolStats {
let mut result = SymbolStats::default();
for i in 0..ZOPFLI_NUM_LL {
result.litlens[i] =
(stats1.litlens[i] as f64 * w1 + stats2.litlens[i] as f64 * w2) as usize;
}
for i in 0..ZOPFLI_NUM_D {
result.dists[i] = (stats1.dists[i] as f64 * w1 + stats2.dists[i] as f64 * w2) as usize;
}
result.litlens[256] = 1; // End symbol.
result
}
/// Finds the minimum possible cost this cost model can return for valid length and
/// distance symbols.
fn get_cost_model_min_cost<F: Fn(usize, u16) -> f64>(costmodel: F) -> f64 {
let mut bestlength = 0; // length that has lowest cost in the cost model
let mut bestdist = 0; // distance that has lowest cost in the cost model
// Table of distances that have a different distance symbol in the deflate
// specification. Each value is the first distance that has a new symbol. Only
// different symbols affect the cost model so only these need to be checked.
// See RFC 1951 section 3.2.5. Compressed blocks (length and distance codes).
const DSYMBOLS: [u16; 30] = [
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537,
2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577,
];
let mut mincost = f64::INFINITY;
for i in 3..259 {
let c = costmodel(i, 1);
if c < mincost {
bestlength = i;
mincost = c;
}
}
mincost = f64::INFINITY;
for dsym in DSYMBOLS {
let c = costmodel(3, dsym);
if c < mincost {
bestdist = dsym;
mincost = c;
}
}
costmodel(bestlength, bestdist)
}
/// Performs the forward pass for "squeeze". Gets the most optimal length to reach
/// every byte from a previous byte, using cost calculations.
/// `s`: the `ZopfliBlockState`
/// `in_data`: the input data array
/// `instart`: where to start
/// `inend`: where to stop (not inclusive)
/// `costmodel`: function to calculate the cost of some lit/len/dist pair.
/// `length_array`: output array of size `(inend - instart)` which will receive the best
/// length to reach this byte from a previous byte.
/// returns the cost that was, according to the `costmodel`, needed to get to the end.
fn get_best_lengths<F: Fn(usize, u16) -> f64, C: Cache>(
lmc: &mut C,
in_data: &[u8],
instart: usize,
inend: usize,
costmodel: F,
h: &mut ZopfliHash,
costs: &mut Vec<f32>,
) -> (f64, Vec<u16>) {
// Best cost to get here so far.
let blocksize = inend - instart;
let mut length_array = vec![0; blocksize + 1];
if instart == inend {
return (0.0, length_array);
}
let windowstart = instart.saturating_sub(ZOPFLI_WINDOW_SIZE);
h.reset();
let arr = &in_data[..inend];
h.warmup(arr, windowstart, inend);
for i in windowstart..instart {
h.update(arr, i);
}
costs.resize(blocksize + 1, 0.0);
for cost in costs.iter_mut().take(blocksize + 1).skip(1) {
*cost = f32::INFINITY;
}
costs[0] = 0.0; /* Because it's the start. */
let mut i = instart;
let mut leng;
let mut longest_match;
let mut sublen = vec![0; ZOPFLI_MAX_MATCH + 1];
let mincost = get_cost_model_min_cost(&costmodel);
while i < inend {
let mut j = i - instart; // Index in the costs array and length_array.
h.update(arr, i);
// If we're in a long repetition of the same character and have more than
// ZOPFLI_MAX_MATCH characters before and after our position.
if h.same[i & ZOPFLI_WINDOW_MASK] > ZOPFLI_MAX_MATCH as u16 * 2
&& i > instart + ZOPFLI_MAX_MATCH + 1
&& i + ZOPFLI_MAX_MATCH * 2 + 1 < inend
&& h.same[(i - ZOPFLI_MAX_MATCH) & ZOPFLI_WINDOW_MASK] > ZOPFLI_MAX_MATCH as u16
{
let symbolcost = costmodel(ZOPFLI_MAX_MATCH, 1);
// Set the length to reach each one to ZOPFLI_MAX_MATCH, and the cost to
// the cost corresponding to that length. Doing this, we skip
// ZOPFLI_MAX_MATCH values to avoid calling ZopfliFindLongestMatch.
for _ in 0..ZOPFLI_MAX_MATCH {
costs[j + ZOPFLI_MAX_MATCH] = costs[j] + symbolcost as f32;
length_array[j + ZOPFLI_MAX_MATCH] = ZOPFLI_MAX_MATCH as u16;
i += 1;
j += 1;
h.update(arr, i);
}
}
longest_match = find_longest_match(
lmc,
h,
arr,
i,
inend,
instart,
ZOPFLI_MAX_MATCH,
&mut Some(&mut sublen),
);
leng = longest_match.length;
// Literal.
if i < inend {
let new_cost = costmodel(arr[i] as usize, 0) + costs[j] as f64;
debug_assert!(new_cost >= 0.0);
if new_cost < costs[j + 1] as f64 {
costs[j + 1] = new_cost as f32;
length_array[j + 1] = 1;
}
}
// Lengths.
let kend = cmp::min(leng as usize, inend - i);
let mincostaddcostj = mincost + costs[j] as f64;
for (k, &sublength) in sublen.iter().enumerate().take(kend + 1).skip(3) {
// Calling the cost model is expensive, avoid this if we are already at
// the minimum possible cost that it can return.
if costs[j + k] as f64 <= mincostaddcostj {
continue;
}
let new_cost = costmodel(k, sublength) + costs[j] as f64;
debug_assert!(new_cost >= 0.0);
if new_cost < costs[j + k] as f64 {
debug_assert!(k <= ZOPFLI_MAX_MATCH);
costs[j + k] = new_cost as f32;
length_array[j + k] = k as u16;
}
}
i += 1;
}
debug_assert!(costs[blocksize] >= 0.0);
(costs[blocksize] as f64, length_array)
}
/// Calculates the optimal path of lz77 lengths to use, from the calculated
/// `length_array`. The `length_array` must contain the optimal length to reach that
/// byte. The path will be filled with the lengths to use, so its data size will be
/// the amount of lz77 symbols.
fn trace(size: usize, length_array: &[u16]) -> Vec<u16> {
let mut index = size;
if size == 0 {
return vec![];
}
let mut path = Vec::with_capacity(index);
while index > 0 {
let lai = length_array[index];
let laiu = lai as usize;
path.push(lai);
debug_assert!(laiu <= index);
debug_assert!(laiu <= ZOPFLI_MAX_MATCH);
debug_assert_ne!(lai, 0);
index -= laiu;
}
path
}
/// Does a single run for `lz77_optimal`. For good compression, repeated runs
/// with updated statistics should be performed.
/// `s`: the block state
/// `in_data`: the input data array
/// `instart`: where to start
/// `inend`: where to stop (not inclusive)
/// `length_array`: array of size `(inend - instart)` used to store lengths
/// `costmodel`: function to use as the cost model for this squeeze run
/// `store`: place to output the LZ77 data
/// returns the cost that was, according to the `costmodel`, needed to get to the end.
/// This is not the actual cost.
#[allow(clippy::too_many_arguments)] // Not feasible to refactor in a more readable way
fn lz77_optimal_run<F: Fn(usize, u16) -> f64, C: Cache>(
lmc: &mut C,
in_data: &[u8],
instart: usize,
inend: usize,
costmodel: F,
store: &mut Lz77Store,
h: &mut ZopfliHash,
costs: &mut Vec<f32>,
) {
let (cost, length_array) = get_best_lengths(lmc, in_data, instart, inend, costmodel, h, costs);
let path = trace(inend - instart, &length_array);
store.follow_path(in_data, instart, inend, path, lmc);
debug_assert!(cost < f64::INFINITY);
}
/// Does the same as `lz77_optimal`, but optimized for the fixed tree of the
/// deflate standard.
/// The fixed tree never gives the best compression. But this gives the best
/// possible LZ77 encoding possible with the fixed tree.
/// This does not create or output any fixed tree, only LZ77 data optimized for
/// using with a fixed tree.
/// If `instart` is larger than `0`, it uses values before `instart` as starting
/// dictionary.
pub fn lz77_optimal_fixed<C: Cache>(
lmc: &mut C,
in_data: &[u8],
instart: usize,
inend: usize,
store: &mut Lz77Store,
) {
let mut h = HASH_POOL.pull();
let mut costs = Vec::with_capacity(inend - instart);
lz77_optimal_run(
lmc,
in_data,
instart,
inend,
get_cost_fixed,
store,
&mut h,
&mut costs,
);
}
/// Calculates lit/len and dist pairs for given data.
/// If `instart` is larger than 0, it uses values before `instart` as starting
/// dictionary.
pub fn lz77_optimal<C: Cache>(
lmc: &mut C,
in_data: &[u8],
instart: usize,
inend: usize,
max_iterations: u64,
max_iterations_without_improvement: u64,
) -> Lz77Store {
/* Dist to get to here with smallest cost. */
let mut currentstore = Lz77Store::new();
let mut outputstore = currentstore.clone();
/* Initial run. */
currentstore.greedy(lmc, in_data, instart, inend);
let mut stats = SymbolStats::default();
stats.get_statistics(¤tstore);
let mut h = HASH_POOL.pull();
let mut costs = Vec::with_capacity(inend - instart + 1);
let mut beststats = SymbolStats::default();
let mut bestcost = f64::INFINITY;
let mut lastcost = 0.0;
/* Try randomizing the costs a bit once the size stabilizes. */
let mut ran_state = RanState::new();
let mut lastrandomstep = u64::MAX;
/* Do regular deflate, then loop multiple shortest path runs, each time using
the statistics of the previous run. */
/* Repeat statistics with each time the cost model from the previous stat
run. */
let mut current_iteration: u64 = 0;
let mut iterations_without_improvement: u64 = 0;
loop {
currentstore.reset();
lz77_optimal_run(
lmc,
in_data,
instart,
inend,
|a, b| get_cost_stat(a, b, &stats),
&mut currentstore,
&mut h,
&mut costs,
);
let cost = calculate_block_size(¤tstore, 0, currentstore.size(), BlockType::Dynamic);
if cost < bestcost {
iterations_without_improvement = 0;
/* Copy to the output store. */
outputstore = currentstore.clone();
beststats = stats;
bestcost = cost;
debug!("Iteration {}: {} bit", current_iteration, cost);
} else {
iterations_without_improvement += 1;
trace!("Iteration {}: {} bit", current_iteration, cost);
if iterations_without_improvement >= max_iterations_without_improvement {
break;
}
}
current_iteration += 1;
if current_iteration >= max_iterations {
break;
}
let laststats = stats;
stats.clear_freqs();
stats.get_statistics(¤tstore);
if lastrandomstep != u64::MAX {
/* This makes it converge slower but better. Do it only once the
randomness kicks in so that if the user does few iterations, it gives a
better result sooner. */
stats = add_weighed_stat_freqs(&stats, 1.0, &laststats, 0.5);
stats.calculate_entropy();
}
if current_iteration > 5 && (cost - lastcost).abs() < f64::EPSILON {
stats = beststats;
stats.randomize_stat_freqs(&mut ran_state);
stats.calculate_entropy();
lastrandomstep = current_iteration;
}
lastcost = cost;
}
outputstore
}