zopfli/deflate.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
use alloc::vec::Vec;
use core::{cmp, iter};
#[cfg(feature = "std")]
use log::{debug, log_enabled};
use crate::{
blocksplitter::{blocksplit, blocksplit_lz77},
cache::ZopfliLongestMatchCache,
iter::ToFlagLastIterator,
katajainen::length_limited_code_lengths,
lz77::{LitLen, Lz77Store},
squeeze::{lz77_optimal, lz77_optimal_fixed},
symbols::{
get_dist_extra_bits, get_dist_extra_bits_value, get_dist_symbol,
get_dist_symbol_extra_bits, get_length_extra_bits, get_length_extra_bits_value,
get_length_symbol, get_length_symbol_extra_bits,
},
tree::lengths_to_symbols,
util::{ZOPFLI_NUM_D, ZOPFLI_NUM_LL, ZOPFLI_WINDOW_SIZE},
Error, Options, Write,
};
/// A DEFLATE encoder powered by the Zopfli algorithm that compresses data written
/// to it to the specified sink. Most users will find using [`compress`](crate::compress)
/// easier and more performant.
///
/// The data will be compressed as soon as possible, without trying to fill a
/// backreference window. As a consequence, frequent short writes may cause more
/// DEFLATE blocks to be emitted with less optimal Huffman trees, which can hurt
/// compression and runtime. If they are a concern, short writes can be conveniently
/// dealt with by wrapping this encoder with a [`BufWriter`](std::io::BufWriter), as done
/// by the [`new_buffered`](DeflateEncoder::new_buffered) method. An adequate write size
/// would be >32 KiB, which allows the second complete chunk to leverage a full-sized
/// backreference window.
pub struct DeflateEncoder<W: Write> {
options: Options,
btype: BlockType,
have_chunk: bool,
chunk_start: usize,
window_and_chunk: Vec<u8>,
bitwise_writer: Option<BitwiseWriter<W>>,
}
impl<W: Write> DeflateEncoder<W> {
/// Creates a new Zopfli DEFLATE encoder that will operate according to the
/// specified options.
pub fn new(options: Options, btype: BlockType, sink: W) -> Self {
DeflateEncoder {
options,
btype,
have_chunk: false,
chunk_start: 0,
window_and_chunk: Vec::with_capacity(ZOPFLI_WINDOW_SIZE),
bitwise_writer: Some(BitwiseWriter::new(sink)),
}
}
/// Creates a new Zopfli DEFLATE encoder that operates according to the
/// specified options and is wrapped with a buffer to guarantee that
/// data is compressed in large chunks, which is necessary for decent
/// performance and good compression ratio.
#[cfg(feature = "std")]
pub fn new_buffered(options: Options, btype: BlockType, sink: W) -> std::io::BufWriter<Self> {
std::io::BufWriter::with_capacity(
crate::util::ZOPFLI_MASTER_BLOCK_SIZE,
Self::new(options, btype, sink),
)
}
/// Encodes any pending chunks of data and writes them to the sink,
/// consuming the encoder and returning the wrapped sink. The sink
/// will have received a complete DEFLATE stream when this method
/// returns.
///
/// The encoder is automatically [`finish`](Self::finish)ed when
/// dropped, but explicitly finishing it with this method allows
/// handling I/O errors.
pub fn finish(mut self) -> Result<W, Error> {
self._finish().map(|sink| sink.unwrap())
}
/// Compresses the chunk stored at `window_and_chunk`. This includes
/// a rolling window of the last `ZOPFLI_WINDOW_SIZE` data bytes, if
/// available.
#[inline]
fn compress_chunk(&mut self, is_last: bool) -> Result<(), Error> {
deflate_part(
&self.options,
self.btype,
is_last,
&self.window_and_chunk,
self.chunk_start,
self.window_and_chunk.len(),
self.bitwise_writer.as_mut().unwrap(),
)
}
/// Sets the next chunk that will be compressed by the next
/// call to `compress_chunk` and updates the rolling data window
/// accordingly.
fn set_chunk(&mut self, chunk: &[u8]) {
// Remove bytes exceeding the window size. Start with the
// oldest bytes, which are at the beginning of the buffer.
// The buffer length is then the position where the chunk
// we've just received starts
self.window_and_chunk.drain(
..self
.window_and_chunk
.len()
.saturating_sub(ZOPFLI_WINDOW_SIZE),
);
self.chunk_start = self.window_and_chunk.len();
self.window_and_chunk.extend_from_slice(chunk);
self.have_chunk = true;
}
/// Encodes the last chunk and finishes any partial bits.
/// The encoder will be unusable for further compression
/// after this method returns. This is intended to be an
/// implementation detail of the `Drop` trait and
/// [`finish`](Self::finish) method.
fn _finish(&mut self) -> Result<Option<W>, Error> {
if self.bitwise_writer.is_none() {
return Ok(None);
}
self.compress_chunk(true)?;
let mut bitwise_writer = self.bitwise_writer.take().unwrap();
bitwise_writer.finish_partial_bits()?;
Ok(Some(bitwise_writer.out))
}
}
impl<W: Write> Write for DeflateEncoder<W> {
fn write(&mut self, buf: &[u8]) -> Result<usize, Error> {
// Any previous chunk is known to be non-last at this point,
// so compress it now
if self.have_chunk {
self.compress_chunk(false)?;
}
// Set the chunk to be used for the next compression operation
// to this chunk. We don't know whether it's last or not yet
self.set_chunk(buf);
Ok(buf.len())
}
fn flush(&mut self) -> Result<(), Error> {
self.bitwise_writer.as_mut().unwrap().out.flush()
}
}
impl<W: Write> Drop for DeflateEncoder<W> {
fn drop(&mut self) {
self._finish().ok();
}
}
// Boilerplate to make latest Rustdoc happy: https://github.com/rust-lang/rust/issues/117796
#[cfg(all(doc, feature = "std"))]
impl<W: crate::io::Write> std::io::Write for DeflateEncoder<W> {
fn write(&mut self, _buf: &[u8]) -> std::io::Result<usize> {
unimplemented!()
}
fn flush(&mut self) -> std::io::Result<()> {
unimplemented!()
}
}
/// Deflate a part, to allow for chunked, streaming compression with [`DeflateEncoder`].
/// It is possible to call this function multiple times in a row, shifting
/// instart and inend to next bytes of the data. If instart is larger than 0, then
/// previous bytes are used as the initial dictionary for LZ77.
/// This function will usually output multiple deflate blocks. If final is true, then
/// the final bit will be set on the last block.
/// Like deflate, but allows to specify start and end byte with instart and
/// inend. Only that part is compressed, but earlier bytes are still used for the
/// back window.
fn deflate_part<W: Write>(
options: &Options,
btype: BlockType,
final_block: bool,
in_data: &[u8],
instart: usize,
inend: usize,
bitwise_writer: &mut BitwiseWriter<W>,
) -> Result<(), Error> {
/* If btype=Dynamic is specified, it tries all block types. If a lesser btype is
given, then however it forces that one. Neither of the lesser types needs
block splitting as they have no dynamic huffman trees. */
match btype {
BlockType::Uncompressed => {
add_non_compressed_block(final_block, in_data, instart, inend, bitwise_writer)
}
BlockType::Fixed => {
let mut store = Lz77Store::new();
lz77_optimal_fixed(
&mut ZopfliLongestMatchCache::new(inend - instart),
in_data,
instart,
inend,
&mut store,
);
add_lz77_block(
btype,
final_block,
in_data,
&store,
0,
store.size(),
0,
bitwise_writer,
)
}
BlockType::Dynamic => blocksplit_attempt(
options,
final_block,
in_data,
instart,
inend,
bitwise_writer,
),
}
}
/// The type of data blocks to generate for a DEFLATE stream.
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
#[cfg_attr(all(test, feature = "std"), derive(proptest_derive::Arbitrary))]
pub enum BlockType {
/// Non-compressed blocks (BTYPE=00).
///
/// The input data will be divided into chunks up to 64 KiB big and
/// stored in the DEFLATE stream without compression. This is mainly
/// useful for test and development purposes.
Uncompressed,
/// Compressed blocks with fixed Huffman codes (BTYPE=01).
///
/// The input data will be compressed into DEFLATE blocks using a fixed
/// Huffman tree defined in the DEFLATE specification. This provides fast
/// but poor compression, as the Zopfli algorithm is not actually used.
Fixed,
/// Select the most space-efficient block types for the input data.
/// This is the recommended type for the vast majority of Zopfli
/// applications.
///
/// This mode lets the Zopfli algorithm choose the combination of block
/// types that minimizes data size. The emitted block types may be
/// [`Uncompressed`](Self::Uncompressed) or [`Fixed`](Self::Fixed), in
/// addition to compressed with dynamic Huffman codes (BTYPE=10).
Dynamic,
}
impl Default for BlockType {
fn default() -> Self {
Self::Dynamic
}
}
fn fixed_tree() -> (Vec<u32>, Vec<u32>) {
let mut ll = Vec::with_capacity(ZOPFLI_NUM_LL);
ll.resize(144, 8);
ll.resize(256, 9);
ll.resize(280, 7);
ll.resize(288, 8);
let d = vec![5; ZOPFLI_NUM_D];
(ll, d)
}
/// Changes the population counts in a way that the consequent Huffman tree
/// compression, especially its rle-part, will be more likely to compress this data
/// more efficiently. length contains the size of the histogram.
fn optimize_huffman_for_rle(counts: &mut [usize]) {
let mut length = counts.len();
// 1) We don't want to touch the trailing zeros. We may break the
// rules of the format by adding more data in the distance codes.
loop {
if length == 0 {
return;
}
if counts[length - 1] != 0 {
// Now counts[0..length - 1] does not have trailing zeros.
break;
}
length -= 1;
}
// 2) Let's mark all population counts that already can be encoded
// with an rle code.
let mut good_for_rle = vec![false; length];
// Let's not spoil any of the existing good rle codes.
// Mark any seq of 0's that is longer than 5 as a good_for_rle.
// Mark any seq of non-0's that is longer than 7 as a good_for_rle.
let mut symbol = counts[0];
let mut stride = 0;
for (i, &count) in counts.iter().enumerate().take(length) {
if count != symbol {
if (symbol == 0 && stride >= 5) || (symbol != 0 && stride >= 7) {
for k in 0..stride {
good_for_rle[i - k - 1] = true;
}
}
stride = 1;
symbol = count;
} else {
stride += 1;
}
}
// 3) Let's replace those population counts that lead to more rle codes.
stride = 0;
let mut limit = counts[0];
let mut sum = 0;
for i in 0..(length + 1) {
// Heuristic for selecting the stride ranges to collapse.
if i == length || good_for_rle[i] || (counts[i] as i32 - limit as i32).abs() >= 4 {
if stride >= 4 || (stride >= 3 && sum == 0) {
// The stride must end, collapse what we have, if we have enough (4).
let count = if sum == 0 {
// Don't upgrade an all zeros stride to ones.
0
} else {
cmp::max((sum + stride / 2) / stride, 1)
};
set_counts_to_count(counts, count, i, stride);
}
stride = 0;
sum = 0;
if length > 2 && i < length - 3 {
// All interesting strides have a count of at least 4,
// at least when non-zeros.
limit = (counts[i] + counts[i + 1] + counts[i + 2] + counts[i + 3] + 2) / 4;
} else if i < length {
limit = counts[i];
} else {
limit = 0;
}
}
stride += 1;
if i != length {
sum += counts[i];
}
}
}
// Ensures there are at least 2 distance codes to support buggy decoders.
// Zlib 1.2.1 and below have a bug where it fails if there isn't at least 1
// distance code (with length > 0), even though it's valid according to the
// deflate spec to have 0 distance codes. On top of that, some mobile phones
// require at least two distance codes. To support these decoders too (but
// potentially at the cost of a few bytes), add dummy code lengths of 1.
// References to this bug can be found in the changelog of
// Zlib 1.2.2 and here: http://www.jonof.id.au/forum/index.php?topic=515.0.
//
// d_lengths: the 32 lengths of the distance codes.
fn patch_distance_codes_for_buggy_decoders(d_lengths: &mut [u32]) {
// Ignore the two unused codes from the spec
let num_dist_codes = d_lengths
.iter()
.take(30)
.filter(|&&d_length| d_length != 0)
.count();
match num_dist_codes {
0 => {
d_lengths[0] = 1;
d_lengths[1] = 1;
}
1 => {
let index = if d_lengths[0] == 0 { 0 } else { 1 };
d_lengths[index] = 1;
}
_ => {} // Two or more codes is fine.
}
}
/// Same as `calculate_block_symbol_size`, but for block size smaller than histogram
/// size.
fn calculate_block_symbol_size_small(
ll_lengths: &[u32],
d_lengths: &[u32],
lz77: &Lz77Store,
lstart: usize,
lend: usize,
) -> usize {
let mut result = 0;
debug_assert!(lend == lstart || lend - 1 < lz77.size());
for &item in &lz77.litlens[lstart..lend] {
match item {
LitLen::Literal(litlens_i) => {
debug_assert!(litlens_i < 259);
result += ll_lengths[litlens_i as usize]
}
LitLen::LengthDist(litlens_i, dists_i) => {
debug_assert!(litlens_i < 259);
let ll_symbol = get_length_symbol(litlens_i as usize);
let d_symbol = get_dist_symbol(dists_i);
result += ll_lengths[ll_symbol];
result += d_lengths[d_symbol];
result += get_length_symbol_extra_bits(ll_symbol);
result += get_dist_symbol_extra_bits(d_symbol);
}
}
}
result += ll_lengths[256]; // end symbol
result as usize
}
/// Same as `calculate_block_symbol_size`, but with the histogram provided by the caller.
fn calculate_block_symbol_size_given_counts(
ll_counts: &[usize],
d_counts: &[usize],
ll_lengths: &[u32],
d_lengths: &[u32],
lz77: &Lz77Store,
lstart: usize,
lend: usize,
) -> usize {
if lstart + ZOPFLI_NUM_LL * 3 > lend {
calculate_block_symbol_size_small(ll_lengths, d_lengths, lz77, lstart, lend)
} else {
let mut result = 0;
for i in 0..256 {
result += ll_lengths[i] * ll_counts[i] as u32;
}
for i in 257..286 {
result += ll_lengths[i] * ll_counts[i] as u32;
result += (get_length_symbol_extra_bits(i) as usize * ll_counts[i]) as u32;
}
for i in 0..30 {
result += d_lengths[i] * d_counts[i] as u32;
result += (get_dist_symbol_extra_bits(i) as usize * d_counts[i]) as u32;
}
result += ll_lengths[256]; // end symbol
result as usize
}
}
/// Calculates size of the part after the header and tree of an LZ77 block, in bits.
fn calculate_block_symbol_size(
ll_lengths: &[u32],
d_lengths: &[u32],
lz77: &Lz77Store,
lstart: usize,
lend: usize,
) -> usize {
if lstart + ZOPFLI_NUM_LL * 3 > lend {
calculate_block_symbol_size_small(ll_lengths, d_lengths, lz77, lstart, lend)
} else {
let (ll_counts, d_counts) = lz77.get_histogram(lstart, lend);
calculate_block_symbol_size_given_counts(
&*ll_counts,
&*d_counts,
ll_lengths,
d_lengths,
lz77,
lstart,
lend,
)
}
}
/// Encodes the Huffman tree and returns how many bits its encoding takes; only returns the size
/// and runs faster.
fn encode_tree_no_output(
ll_lengths: &[u32],
d_lengths: &[u32],
use_16: bool,
use_17: bool,
use_18: bool,
) -> usize {
let mut hlit = 29; /* 286 - 257 */
let mut hdist = 29; /* 32 - 1, but gzip does not like hdist > 29.*/
let mut clcounts = [0; 19];
/* The order in which code length code lengths are encoded as per deflate. */
let order = [
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15,
];
let mut result_size = 0;
/* Trim zeros. */
while hlit > 0 && ll_lengths[257 + hlit - 1] == 0 {
hlit -= 1;
}
while hdist > 0 && d_lengths[1 + hdist - 1] == 0 {
hdist -= 1;
}
let hlit2 = hlit + 257;
let lld_total = hlit2 + hdist + 1; /* Total amount of literal, length, distance codes. */
let mut i = 0;
while i < lld_total {
/* This is an encoding of a huffman tree, so now the length is a symbol */
let symbol = if i < hlit2 {
ll_lengths[i]
} else {
d_lengths[i - hlit2]
} as u8;
let mut count = 1;
if use_16 || (symbol == 0 && (use_17 || use_18)) {
let mut j = i + 1;
let mut symbol_calc = if j < hlit2 {
ll_lengths[j]
} else {
d_lengths[j - hlit2]
} as u8;
while j < lld_total && symbol == symbol_calc {
count += 1;
j += 1;
symbol_calc = if j < hlit2 {
ll_lengths[j]
} else {
d_lengths[j - hlit2]
} as u8;
}
}
i += count - 1;
/* Repetitions of zeroes */
if symbol == 0 && count >= 3 {
if use_18 {
while count >= 11 {
let count2 = if count > 138 { 138 } else { count };
clcounts[18] += 1;
count -= count2;
}
}
if use_17 {
while count >= 3 {
let count2 = if count > 10 { 10 } else { count };
clcounts[17] += 1;
count -= count2;
}
}
}
/* Repetitions of any symbol */
if use_16 && count >= 4 {
count -= 1; /* Since the first one is hardcoded. */
clcounts[symbol as usize] += 1;
while count >= 3 {
let count2 = if count > 6 { 6 } else { count };
clcounts[16] += 1;
count -= count2;
}
}
/* No or insufficient repetition */
clcounts[symbol as usize] += count;
while count > 0 {
count -= 1;
}
i += 1;
}
let clcl = length_limited_code_lengths(&clcounts, 7);
let mut hclen = 15;
/* Trim zeros. */
while hclen > 0 && clcounts[order[hclen + 4 - 1]] == 0 {
hclen -= 1;
}
result_size += 14; /* hlit, hdist, hclen bits */
result_size += (hclen + 4) * 3; /* clcl bits */
for i in 0..19 {
result_size += clcl[i] as usize * clcounts[i];
}
/* Extra bits. */
result_size += clcounts[16] * 2;
result_size += clcounts[17] * 3;
result_size += clcounts[18] * 7;
result_size
}
static TRUTH_TABLE: [(bool, bool, bool); 8] = [
(false, false, false),
(true, false, false),
(false, true, false),
(true, true, false),
(false, false, true),
(true, false, true),
(false, true, true),
(true, true, true),
];
/// Gives the exact size of the tree, in bits, as it will be encoded in DEFLATE.
fn calculate_tree_size(ll_lengths: &[u32], d_lengths: &[u32]) -> usize {
TRUTH_TABLE
.iter()
.map(|&(use_16, use_17, use_18)| {
encode_tree_no_output(ll_lengths, d_lengths, use_16, use_17, use_18)
})
.min()
.unwrap_or(0)
}
/// Encodes the Huffman tree and returns how many bits its encoding takes and returns output.
// TODO: This return value is unused.
fn encode_tree<W: Write>(
ll_lengths: &[u32],
d_lengths: &[u32],
use_16: bool,
use_17: bool,
use_18: bool,
bitwise_writer: &mut BitwiseWriter<W>,
) -> Result<usize, Error> {
let mut hlit = 29; /* 286 - 257 */
let mut hdist = 29; /* 32 - 1, but gzip does not like hdist > 29.*/
let mut clcounts = [0; 19];
/* The order in which code length code lengths are encoded as per deflate. */
let order = [
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15,
];
let mut result_size = 0;
let mut rle = vec![];
let mut rle_bits = vec![];
/* Trim zeros. */
while hlit > 0 && ll_lengths[257 + hlit - 1] == 0 {
hlit -= 1;
}
while hdist > 0 && d_lengths[1 + hdist - 1] == 0 {
hdist -= 1;
}
let hlit2 = hlit + 257;
let lld_total = hlit2 + hdist + 1; /* Total amount of literal, length, distance codes. */
let mut i = 0;
while i < lld_total {
/* This is an encoding of a huffman tree, so now the length is a symbol */
let symbol = if i < hlit2 {
ll_lengths[i]
} else {
d_lengths[i - hlit2]
} as u8;
let mut count = 1;
if use_16 || (symbol == 0 && (use_17 || use_18)) {
let mut j = i + 1;
let mut symbol_calc = if j < hlit2 {
ll_lengths[j]
} else {
d_lengths[j - hlit2]
} as u8;
while j < lld_total && symbol == symbol_calc {
count += 1;
j += 1;
symbol_calc = if j < hlit2 {
ll_lengths[j]
} else {
d_lengths[j - hlit2]
} as u8;
}
}
i += count - 1;
/* Repetitions of zeroes */
if symbol == 0 && count >= 3 {
if use_18 {
while count >= 11 {
let count2 = if count > 138 { 138 } else { count };
rle.push(18);
rle_bits.push(count2 - 11);
clcounts[18] += 1;
count -= count2;
}
}
if use_17 {
while count >= 3 {
let count2 = if count > 10 { 10 } else { count };
rle.push(17);
rle_bits.push(count2 - 3);
clcounts[17] += 1;
count -= count2;
}
}
}
/* Repetitions of any symbol */
if use_16 && count >= 4 {
count -= 1; /* Since the first one is hardcoded. */
clcounts[symbol as usize] += 1;
rle.push(symbol);
rle_bits.push(0);
while count >= 3 {
let count2 = if count > 6 { 6 } else { count };
rle.push(16);
rle_bits.push(count2 - 3);
clcounts[16] += 1;
count -= count2;
}
}
/* No or insufficient repetition */
clcounts[symbol as usize] += count;
while count > 0 {
rle.push(symbol);
rle_bits.push(0);
count -= 1;
}
i += 1;
}
let clcl = length_limited_code_lengths(&clcounts, 7);
let clsymbols = lengths_to_symbols(&clcl, 7);
let mut hclen = 15;
/* Trim zeros. */
while hclen > 0 && clcounts[order[hclen + 4 - 1]] == 0 {
hclen -= 1;
}
bitwise_writer.add_bits(hlit as u32, 5)?;
bitwise_writer.add_bits(hdist as u32, 5)?;
bitwise_writer.add_bits(hclen as u32, 4)?;
for &item in order.iter().take(hclen + 4) {
bitwise_writer.add_bits(clcl[item], 3)?;
}
for i in 0..rle.len() {
let rle_i = rle[i] as usize;
let rle_bits_i = rle_bits[i] as u32;
let sym = clsymbols[rle_i];
bitwise_writer.add_huffman_bits(sym, clcl[rle_i])?;
/* Extra bits. */
if rle_i == 16 {
bitwise_writer.add_bits(rle_bits_i, 2)?;
} else if rle_i == 17 {
bitwise_writer.add_bits(rle_bits_i, 3)?;
} else if rle_i == 18 {
bitwise_writer.add_bits(rle_bits_i, 7)?;
}
}
result_size += 14; /* hlit, hdist, hclen bits */
result_size += (hclen + 4) * 3; /* clcl bits */
for i in 0..19 {
result_size += clcl[i] as usize * clcounts[i];
}
/* Extra bits. */
result_size += clcounts[16] * 2;
result_size += clcounts[17] * 3;
result_size += clcounts[18] * 7;
Ok(result_size)
}
fn add_dynamic_tree<W: Write>(
ll_lengths: &[u32],
d_lengths: &[u32],
bitwise_writer: &mut BitwiseWriter<W>,
) -> Result<(), Error> {
let mut best = 0;
let mut bestsize = 0;
for i in 0..8 {
let size = encode_tree_no_output(ll_lengths, d_lengths, i & 1 > 0, i & 2 > 0, i & 4 > 0);
if bestsize == 0 || size < bestsize {
bestsize = size;
best = i;
}
}
encode_tree(
ll_lengths,
d_lengths,
best & 1 > 0,
best & 2 > 0,
best & 4 > 0,
bitwise_writer,
)
.map(|_| ())
}
/// Adds a deflate block with the given LZ77 data to the output.
/// `options`: global program options
/// `btype`: the block type, must be `Fixed` or `Dynamic`
/// `final`: whether to set the "final" bit on this block, must be the last block
/// `litlens`: literal/length array of the LZ77 data, in the same format as in
/// `Lz77Store`.
/// `dists`: distance array of the LZ77 data, in the same format as in
/// `Lz77Store`.
/// `lstart`: where to start in the LZ77 data
/// `lend`: where to end in the LZ77 data (not inclusive)
/// `expected_data_size`: the uncompressed block size, used for assert, but you can
/// set it to `0` to not do the assertion.
/// `bitwise_writer`: writer responsible for appending bits
#[allow(clippy::too_many_arguments)] // Not feasible to refactor in a more readable way
fn add_lz77_block<W: Write>(
btype: BlockType,
final_block: bool,
in_data: &[u8],
lz77: &Lz77Store,
lstart: usize,
lend: usize,
expected_data_size: usize,
bitwise_writer: &mut BitwiseWriter<W>,
) -> Result<(), Error> {
if btype == BlockType::Uncompressed {
let length = lz77.get_byte_range(lstart, lend);
let pos = if lstart == lend { 0 } else { lz77.pos[lstart] };
let end = pos + length;
return add_non_compressed_block(final_block, in_data, pos, end, bitwise_writer);
}
bitwise_writer.add_bit(final_block as u8)?;
let (ll_lengths, d_lengths) = match btype {
BlockType::Uncompressed => unreachable!(),
BlockType::Fixed => {
bitwise_writer.add_bit(1)?;
bitwise_writer.add_bit(0)?;
fixed_tree()
}
BlockType::Dynamic => {
bitwise_writer.add_bit(0)?;
bitwise_writer.add_bit(1)?;
let (_, ll_lengths, d_lengths) = get_dynamic_lengths(lz77, lstart, lend);
let _detect_tree_size = bitwise_writer.bytes_written();
add_dynamic_tree(&ll_lengths, &d_lengths, bitwise_writer)?;
debug!(
"treesize: {}",
bitwise_writer.bytes_written() - _detect_tree_size
);
(ll_lengths, d_lengths)
}
};
let ll_symbols = lengths_to_symbols(&ll_lengths, 15);
let d_symbols = lengths_to_symbols(&d_lengths, 15);
let detect_block_size = bitwise_writer.bytes_written();
add_lz77_data(
lz77,
lstart,
lend,
expected_data_size,
&ll_symbols,
&ll_lengths,
&d_symbols,
&d_lengths,
bitwise_writer,
)?;
/* End symbol. */
bitwise_writer.add_huffman_bits(ll_symbols[256], ll_lengths[256])?;
if log_enabled!(log::Level::Debug) {
let _uncompressed_size = lz77.litlens[lstart..lend]
.iter()
.fold(0, |acc, &x| acc + x.size());
let _compressed_size = bitwise_writer.bytes_written() - detect_block_size;
debug!(
"compressed block size: {} ({}k) (unc: {})",
_compressed_size,
_compressed_size / 1024,
_uncompressed_size
);
}
Ok(())
}
/// Calculates block size in bits.
/// litlens: lz77 lit/lengths
/// dists: ll77 distances
/// lstart: start of block
/// lend: end of block (not inclusive)
pub fn calculate_block_size(lz77: &Lz77Store, lstart: usize, lend: usize, btype: BlockType) -> f64 {
match btype {
BlockType::Uncompressed => {
let length = lz77.get_byte_range(lstart, lend);
let rem = length % 65535;
let blocks = length / 65535 + (if rem > 0 { 1 } else { 0 });
/* An uncompressed block must actually be split into multiple blocks if it's
larger than 65535 bytes long. Eeach block header is 5 bytes: 3 bits,
padding, LEN and NLEN (potential less padding for first one ignored). */
(blocks * 5 * 8 + length * 8) as f64
}
BlockType::Fixed => {
let fixed_tree = fixed_tree();
let ll_lengths = fixed_tree.0;
let d_lengths = fixed_tree.1;
let mut result = 3.0; /* bfinal and btype bits */
result +=
calculate_block_symbol_size(&ll_lengths, &d_lengths, lz77, lstart, lend) as f64;
result
}
BlockType::Dynamic => get_dynamic_lengths(lz77, lstart, lend).0 + 3.0,
}
}
/// Tries out `OptimizeHuffmanForRle` for this block, if the result is smaller,
/// uses it, otherwise keeps the original. Returns size of encoded tree and data in
/// bits, not including the 3-bit block header.
fn try_optimize_huffman_for_rle(
lz77: &Lz77Store,
lstart: usize,
lend: usize,
ll_counts: &[usize],
d_counts: &[usize],
ll_lengths: Vec<u32>,
d_lengths: Vec<u32>,
) -> (f64, Vec<u32>, Vec<u32>) {
let mut ll_counts2 = Vec::from(ll_counts);
let mut d_counts2 = Vec::from(d_counts);
let treesize = calculate_tree_size(&ll_lengths, &d_lengths);
let datasize = calculate_block_symbol_size_given_counts(
ll_counts,
d_counts,
&ll_lengths,
&d_lengths,
lz77,
lstart,
lend,
);
optimize_huffman_for_rle(&mut ll_counts2);
optimize_huffman_for_rle(&mut d_counts2);
let ll_lengths2 = length_limited_code_lengths(&ll_counts2, 15);
let mut d_lengths2 = length_limited_code_lengths(&d_counts2, 15);
patch_distance_codes_for_buggy_decoders(&mut d_lengths2[..]);
let treesize2 = calculate_tree_size(&ll_lengths2, &d_lengths2);
let datasize2 = calculate_block_symbol_size_given_counts(
ll_counts,
d_counts,
&ll_lengths2,
&d_lengths2,
lz77,
lstart,
lend,
);
if treesize2 + datasize2 < treesize + datasize {
(((treesize2 + datasize2) as f64), ll_lengths2, d_lengths2)
} else {
((treesize + datasize) as f64, ll_lengths, d_lengths)
}
}
/// Calculates the bit lengths for the symbols for dynamic blocks. Chooses bit
/// lengths that give the smallest size of tree encoding + encoding of all the
/// symbols to have smallest output size. This are not necessarily the ideal Huffman
/// bit lengths. Returns size of encoded tree and data in bits, not including the
/// 3-bit block header.
fn get_dynamic_lengths(lz77: &Lz77Store, lstart: usize, lend: usize) -> (f64, Vec<u32>, Vec<u32>) {
let (mut ll_counts, d_counts) = lz77.get_histogram(lstart, lend);
ll_counts[256] = 1; /* End symbol. */
let ll_lengths = length_limited_code_lengths(&*ll_counts, 15);
let mut d_lengths = length_limited_code_lengths(&*d_counts, 15);
patch_distance_codes_for_buggy_decoders(&mut d_lengths[..]);
try_optimize_huffman_for_rle(
lz77,
lstart,
lend,
&*ll_counts,
&*d_counts,
ll_lengths,
d_lengths,
)
}
/// Adds all lit/len and dist codes from the lists as huffman symbols. Does not add
/// end code 256. `expected_data_size` is the uncompressed block size, used for
/// assert, but you can set it to `0` to not do the assertion.
#[allow(clippy::too_many_arguments)] // Not feasible to refactor in a more readable way
fn add_lz77_data<W: Write>(
lz77: &Lz77Store,
lstart: usize,
lend: usize,
expected_data_size: usize,
ll_symbols: &[u32],
ll_lengths: &[u32],
d_symbols: &[u32],
d_lengths: &[u32],
bitwise_writer: &mut BitwiseWriter<W>,
) -> Result<(), Error> {
let mut testlength = 0;
for &item in &lz77.litlens[lstart..lend] {
match item {
LitLen::Literal(lit) => {
let litlen = lit as usize;
debug_assert!(litlen < 256);
debug_assert!(ll_lengths[litlen] > 0);
bitwise_writer.add_huffman_bits(ll_symbols[litlen], ll_lengths[litlen])?;
testlength += 1;
}
LitLen::LengthDist(len, dist) => {
let litlen = len as usize;
let lls = get_length_symbol(litlen);
let ds = get_dist_symbol(dist);
debug_assert!((3..=288).contains(&litlen));
debug_assert!(ll_lengths[lls] > 0);
debug_assert!(d_lengths[ds] > 0);
bitwise_writer.add_huffman_bits(ll_symbols[lls], ll_lengths[lls])?;
bitwise_writer.add_bits(
get_length_extra_bits_value(litlen),
get_length_extra_bits(litlen) as u32,
)?;
bitwise_writer.add_huffman_bits(d_symbols[ds], d_lengths[ds])?;
bitwise_writer.add_bits(
get_dist_extra_bits_value(dist) as u32,
get_dist_extra_bits(dist) as u32,
)?;
testlength += litlen;
}
}
}
debug_assert!(expected_data_size == 0 || testlength == expected_data_size);
Ok(())
}
#[allow(clippy::too_many_arguments)] // Not feasible to refactor in a more readable way
fn add_lz77_block_auto_type<W: Write>(
final_block: bool,
in_data: &[u8],
lz77: &Lz77Store,
lstart: usize,
lend: usize,
expected_data_size: usize,
bitwise_writer: &mut BitwiseWriter<W>,
) -> Result<(), Error> {
let uncompressedcost = calculate_block_size(lz77, lstart, lend, BlockType::Uncompressed);
let mut fixedcost = calculate_block_size(lz77, lstart, lend, BlockType::Fixed);
let dyncost = calculate_block_size(lz77, lstart, lend, BlockType::Dynamic);
/* Whether to perform the expensive calculation of creating an optimal block
with fixed huffman tree to check if smaller. Only do this for small blocks or
blocks which already are pretty good with fixed huffman tree. */
let expensivefixed = (lz77.size() < 1000) || fixedcost <= dyncost * 1.1;
let mut fixedstore = Lz77Store::new();
if lstart == lend {
/* Smallest empty block is represented by fixed block */
bitwise_writer.add_bits(final_block as u32, 1)?;
bitwise_writer.add_bits(1, 2)?; /* btype 01 */
bitwise_writer.add_bits(0, 7)?; /* end symbol has code 0000000 */
return Ok(());
}
if expensivefixed {
/* Recalculate the LZ77 with lz77_optimal_fixed */
let instart = lz77.pos[lstart];
let inend = instart + lz77.get_byte_range(lstart, lend);
lz77_optimal_fixed(
&mut ZopfliLongestMatchCache::new(inend - instart),
in_data,
instart,
inend,
&mut fixedstore,
);
fixedcost = calculate_block_size(&fixedstore, 0, fixedstore.size(), BlockType::Fixed);
}
if uncompressedcost <= fixedcost && uncompressedcost <= dyncost {
add_lz77_block(
BlockType::Uncompressed,
final_block,
in_data,
lz77,
lstart,
lend,
expected_data_size,
bitwise_writer,
)
} else if fixedcost <= dyncost {
if expensivefixed {
add_lz77_block(
BlockType::Fixed,
final_block,
in_data,
&fixedstore,
0,
fixedstore.size(),
expected_data_size,
bitwise_writer,
)
} else {
add_lz77_block(
BlockType::Fixed,
final_block,
in_data,
lz77,
lstart,
lend,
expected_data_size,
bitwise_writer,
)
}
} else {
add_lz77_block(
BlockType::Dynamic,
final_block,
in_data,
lz77,
lstart,
lend,
expected_data_size,
bitwise_writer,
)
}
}
/// Calculates block size in bits, automatically using the best btype.
pub fn calculate_block_size_auto_type(lz77: &Lz77Store, lstart: usize, lend: usize) -> f64 {
let uncompressedcost = calculate_block_size(lz77, lstart, lend, BlockType::Uncompressed);
/* Don't do the expensive fixed cost calculation for larger blocks that are
unlikely to use it. */
let fixedcost = if lz77.size() > 1000 {
uncompressedcost
} else {
calculate_block_size(lz77, lstart, lend, BlockType::Fixed)
};
let dyncost = calculate_block_size(lz77, lstart, lend, BlockType::Dynamic);
uncompressedcost.min(fixedcost).min(dyncost)
}
fn add_all_blocks<W: Write>(
splitpoints: &[usize],
lz77: &Lz77Store,
final_block: bool,
in_data: &[u8],
bitwise_writer: &mut BitwiseWriter<W>,
) -> Result<(), Error> {
let mut last = 0;
for &item in splitpoints.iter() {
add_lz77_block_auto_type(false, in_data, lz77, last, item, 0, bitwise_writer)?;
last = item;
}
add_lz77_block_auto_type(
final_block,
in_data,
lz77,
last,
lz77.size(),
0,
bitwise_writer,
)
}
fn blocksplit_attempt<W: Write>(
options: &Options,
final_block: bool,
in_data: &[u8],
instart: usize,
inend: usize,
bitwise_writer: &mut BitwiseWriter<W>,
) -> Result<(), Error> {
let mut totalcost = 0.0;
let mut lz77 = Lz77Store::new();
/* byte coordinates rather than lz77 index */
let mut splitpoints_uncompressed = Vec::with_capacity(options.maximum_block_splits as usize);
blocksplit(
in_data,
instart,
inend,
options.maximum_block_splits,
&mut splitpoints_uncompressed,
);
let npoints = splitpoints_uncompressed.len();
let mut splitpoints = Vec::with_capacity(npoints);
let mut last = instart;
for &item in &splitpoints_uncompressed {
let store = lz77_optimal(
&mut ZopfliLongestMatchCache::new(item - last),
in_data,
last,
item,
options.iteration_count.get(),
options.iterations_without_improvement.get(),
);
totalcost += calculate_block_size_auto_type(&store, 0, store.size());
// ZopfliAppendLZ77Store(&store, &lz77);
debug_assert!(instart == inend || store.size() > 0);
for (&litlens, &pos) in store.litlens.iter().zip(store.pos.iter()) {
lz77.append_store_item(litlens, pos);
}
splitpoints.push(lz77.size());
last = item;
}
let store = lz77_optimal(
&mut ZopfliLongestMatchCache::new(inend - last),
in_data,
last,
inend,
options.iteration_count.get(),
options.iterations_without_improvement.get(),
);
totalcost += calculate_block_size_auto_type(&store, 0, store.size());
// ZopfliAppendLZ77Store(&store, &lz77);
debug_assert!(instart == inend || store.size() > 0);
for (&litlens, &pos) in store.litlens.iter().zip(store.pos.iter()) {
lz77.append_store_item(litlens, pos);
}
/* Second block splitting attempt */
if npoints > 1 {
let mut splitpoints2 = Vec::with_capacity(splitpoints_uncompressed.len());
let mut totalcost2 = 0.0;
blocksplit_lz77(&lz77, options.maximum_block_splits, &mut splitpoints2);
let mut last = 0;
for &item in &splitpoints2 {
totalcost2 += calculate_block_size_auto_type(&lz77, last, item);
last = item;
}
totalcost2 += calculate_block_size_auto_type(&lz77, last, lz77.size());
if totalcost2 < totalcost {
splitpoints = splitpoints2;
}
}
add_all_blocks(&splitpoints, &lz77, final_block, in_data, bitwise_writer)
}
/// Since an uncompressed block can be max 65535 in size, it actually adds
/// multiple blocks if needed.
fn add_non_compressed_block<W: Write>(
final_block: bool,
in_data: &[u8],
instart: usize,
inend: usize,
bitwise_writer: &mut BitwiseWriter<W>,
) -> Result<(), Error> {
let in_data = &in_data[instart..inend];
let in_data_chunks = in_data.chunks(65535).size_hint().0;
for (chunk, is_final) in in_data
.chunks(65535)
.flag_last()
// Make sure that we output at least one chunk if this is the final block
.chain(iter::once((&[][..], true)))
.take(if final_block {
cmp::max(in_data_chunks, 1)
} else {
in_data_chunks
})
{
let blocksize = chunk.len();
let nlen = !blocksize;
bitwise_writer.add_bit((final_block && is_final) as u8)?;
/* BTYPE 00 */
bitwise_writer.add_bit(0)?;
bitwise_writer.add_bit(0)?;
bitwise_writer.finish_partial_bits()?;
bitwise_writer.add_byte((blocksize % 256) as u8)?;
bitwise_writer.add_byte(((blocksize / 256) % 256) as u8)?;
bitwise_writer.add_byte((nlen % 256) as u8)?;
bitwise_writer.add_byte(((nlen / 256) % 256) as u8)?;
bitwise_writer.add_bytes(chunk)?;
}
Ok(())
}
struct BitwiseWriter<W> {
bit: u8,
bp: u8,
len: usize,
out: W,
}
impl<W: Write> BitwiseWriter<W> {
fn new(out: W) -> BitwiseWriter<W> {
BitwiseWriter {
bit: 0,
bp: 0,
len: 0,
out,
}
}
fn bytes_written(&self) -> usize {
self.len + if self.bp > 0 { 1 } else { 0 }
}
/// For when you want to add a full byte.
fn add_byte(&mut self, byte: u8) -> Result<(), Error> {
self.add_bytes(&[byte])
}
/// For adding a slice of bytes.
fn add_bytes(&mut self, bytes: &[u8]) -> Result<(), Error> {
self.len += bytes.len();
self.out.write_all(bytes)
}
fn add_bit(&mut self, bit: u8) -> Result<(), Error> {
self.bit |= bit << self.bp;
self.bp += 1;
if self.bp == 8 {
self.finish_partial_bits()
} else {
Ok(())
}
}
fn add_bits(&mut self, symbol: u32, length: u32) -> Result<(), Error> {
// TODO: make more efficient (add more bits at once)
for i in 0..length {
let bit = ((symbol >> i) & 1) as u8;
self.add_bit(bit)?;
}
Ok(())
}
/// Adds bits, like `add_bits`, but the order is inverted. The deflate specification
/// uses both orders in one standard.
fn add_huffman_bits(&mut self, symbol: u32, length: u32) -> Result<(), Error> {
// TODO: make more efficient (add more bits at once)
for i in 0..length {
let bit = ((symbol >> (length - i - 1)) & 1) as u8;
self.add_bit(bit)?;
}
Ok(())
}
fn finish_partial_bits(&mut self) -> Result<(), Error> {
if self.bp != 0 {
let bytes = &[self.bit];
self.add_bytes(bytes)?;
self.bit = 0;
self.bp = 0;
}
Ok(())
}
}
fn set_counts_to_count(counts: &mut [usize], count: usize, i: usize, stride: usize) {
for c in &mut counts[(i - stride)..i] {
*c = count;
}
}
#[cfg(test)]
mod test {
use miniz_oxide::inflate;
use super::*;
#[test]
fn test_set_counts_to_count() {
let mut counts = vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
let count = 100;
let i = 8;
let stride = 5;
set_counts_to_count(&mut counts, count, i, stride);
assert_eq!(counts, vec![0, 1, 2, 100, 100, 100, 100, 100, 8, 9])
}
#[test]
fn weird_encoder_write_size_combinations_works() {
let mut compressed_data = vec![];
let default_options = Options::default();
let mut encoder =
DeflateEncoder::new(default_options, BlockType::default(), &mut compressed_data);
encoder.write_all(&[0]).unwrap();
encoder.write_all(&[]).unwrap();
encoder.write_all(&[1, 2]).unwrap();
encoder.write_all(&[]).unwrap();
encoder.write_all(&[]).unwrap();
encoder.write_all(&[3]).unwrap();
encoder.write_all(&[4]).unwrap();
encoder.finish().unwrap();
let decompressed_data = inflate::decompress_to_vec(&compressed_data)
.expect("Could not inflate compressed stream");
assert_eq!(
&[0, 1, 2, 3, 4][..],
decompressed_data,
"Decompressed data should match input data"
);
}
}