zopfli/
blocksplitter.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
use alloc::vec::Vec;

#[cfg(feature = "std")]
use log::{debug, log_enabled};

use crate::{cache::NoCache, deflate::calculate_block_size_auto_type, lz77::Lz77Store};

/// Finds minimum of function `f(i)` where `i` is of type `usize`, `f(i)` is of type
/// `f64`, `i` is in range `start-end` (excluding `end`).
/// Returns the index to the minimum and the minimum value.
fn find_minimum<F: Fn(usize) -> f64>(f: F, start: usize, end: usize) -> (usize, f64) {
    if end - start < 1024 {
        let mut best = f64::INFINITY;
        let mut result = start;
        for i in start..end {
            let v = f(i);
            if v < best {
                best = v;
                result = i;
            }
        }
        (result, best)
    } else {
        /* Try to find minimum faster by recursively checking multiple points. */
        let mut start = start;
        let mut end = end;
        const NUM: usize = 9; /* Good value: 9. ?!?!?!?! */
        let mut p = [0; NUM];
        let mut vp = [0.0; NUM];
        let mut lastbest = f64::INFINITY;
        let mut pos = start;

        while end - start > NUM {
            let mut besti = 0;
            let mut best = f64::INFINITY;
            let multiplier = (end - start) / (NUM + 1);
            for i in 0..NUM {
                p[i] = start + (i + 1) * multiplier;
                vp[i] = f(p[i]);
                if vp[i] < best {
                    best = vp[i];
                    besti = i;
                }
            }
            if best > lastbest {
                break;
            }

            start = if besti == 0 { start } else { p[besti - 1] };
            end = if besti == NUM - 1 { end } else { p[besti + 1] };

            pos = p[besti];
            lastbest = best;
        }
        (pos, lastbest)
    }
}

/// Returns estimated cost of a block in bits.  It includes the size to encode the
/// tree and the size to encode all literal, length and distance symbols and their
/// extra bits.
///
/// litlens: lz77 lit/lengths
/// dists: ll77 distances
/// lstart: start of block
/// lend: end of block (not inclusive)
fn estimate_cost(lz77: &Lz77Store, lstart: usize, lend: usize) -> f64 {
    calculate_block_size_auto_type(lz77, lstart, lend)
}

/// Finds next block to try to split, the largest of the available ones.
/// The largest is chosen to make sure that if only a limited amount of blocks is
/// requested, their sizes are spread evenly.
/// lz77size: the size of the LL77 data, which is the size of the done array here.
/// done: array indicating which blocks starting at that position are no longer
///     splittable (splitting them increases rather than decreases cost).
/// splitpoints: the splitpoints found so far.
/// npoints: the amount of splitpoints found so far.
/// lstart: output variable, giving start of block.
/// lend: output variable, giving end of block.
/// returns 1 if a block was found, 0 if no block found (all are done).
fn find_largest_splittable_block(
    lz77size: usize,
    done: &[u8],
    splitpoints: &[usize],
) -> Option<(usize, usize)> {
    let mut longest = 0;
    let mut found = None;

    let mut last = 0;

    for &item in splitpoints.iter() {
        if done[last] == 0 && item - last > longest {
            found = Some((last, item));
            longest = item - last;
        }
        last = item;
    }

    let end = lz77size - 1;
    if done[last] == 0 && end - last > longest {
        found = Some((last, end));
    }

    found
}

/// Prints the block split points as decimal and hex values in the terminal.
#[inline]
fn print_block_split_points(lz77: &Lz77Store, lz77splitpoints: &[usize]) {
    if !log_enabled!(log::Level::Debug) {
        return;
    }

    let nlz77points = lz77splitpoints.len();
    let mut splitpoints = Vec::with_capacity(nlz77points);

    /* The input is given as lz77 indices, but we want to see the uncompressed
    index values. */
    let mut pos = 0;
    if nlz77points > 0 {
        for (i, item) in lz77.litlens.iter().enumerate() {
            let length = item.size();
            if lz77splitpoints[splitpoints.len()] == i {
                splitpoints.push(pos);
                if splitpoints.len() == nlz77points {
                    break;
                }
            }
            pos += length;
        }
    }
    debug_assert_eq!(splitpoints.len(), nlz77points);

    debug!(
        "block split points: {} (hex: {})",
        splitpoints
            .iter()
            .map(|&sp| format!("{}", sp))
            .collect::<Vec<_>>()
            .join(" "),
        splitpoints
            .iter()
            .map(|&sp| format!("{:x}", sp))
            .collect::<Vec<_>>()
            .join(" ")
    );
}

/// Does blocksplitting on LZ77 data.
/// The output splitpoints are indices in the LZ77 data.
/// maxblocks: set a limit to the amount of blocks. Set to 0 to mean no limit.
pub fn blocksplit_lz77(lz77: &Lz77Store, maxblocks: u16, splitpoints: &mut Vec<usize>) {
    if lz77.size() < 10 {
        return; /* This code fails on tiny files. */
    }

    let mut numblocks = 1u32;
    let mut done = vec![0; lz77.size()];
    let mut lstart = 0;
    let mut lend = lz77.size();

    while maxblocks != 0 && numblocks < maxblocks as u32 {
        debug_assert!(lstart < lend);
        let find_minimum_result = find_minimum(
            |i| estimate_cost(lz77, lstart, i) + estimate_cost(lz77, i, lend),
            lstart + 1,
            lend,
        );
        let llpos = find_minimum_result.0;
        let splitcost = find_minimum_result.1;

        debug_assert!(llpos > lstart);
        debug_assert!(llpos < lend);

        let origcost = estimate_cost(lz77, lstart, lend);

        if splitcost > origcost || llpos == lstart + 1 || llpos == lend {
            done[lstart] = 1;
        } else {
            splitpoints.push(llpos);
            splitpoints.sort();
            numblocks += 1;
        }

        // If `find_largest_splittable_block` returns `None`, no further split will
        // likely reduce compression.
        let is_finished = find_largest_splittable_block(lz77.size(), &done, splitpoints).map_or(
            true,
            |(start, end)| {
                lstart = start;
                lend = end;
                lend - lstart < 10
            },
        );

        if is_finished {
            break;
        }
    }

    print_block_split_points(lz77, splitpoints);
}

/// Does blocksplitting on uncompressed data.
/// The output splitpoints are indices in the uncompressed bytes.
///
/// options: general program options.
/// in: uncompressed input data
/// instart: where to start splitting
/// inend: where to end splitting (not inclusive)
/// maxblocks: maximum amount of blocks to split into, or 0 for no limit
/// splitpoints: dynamic array to put the resulting split point coordinates into.
///   The coordinates are indices in the input array.
/// npoints: pointer to amount of splitpoints, for the dynamic array. The amount of
///   blocks is the amount of splitpoitns + 1.
pub fn blocksplit(
    in_data: &[u8],
    instart: usize,
    inend: usize,
    maxblocks: u16,
    splitpoints: &mut Vec<usize>,
) {
    splitpoints.clear();
    let mut store = Lz77Store::new();

    /* Unintuitively, Using a simple LZ77 method here instead of lz77_optimal
    results in better blocks. */
    {
        store.greedy(&mut NoCache, in_data, instart, inend);
    }

    let mut lz77splitpoints = Vec::with_capacity(maxblocks as usize);
    blocksplit_lz77(&store, maxblocks, &mut lz77splitpoints);

    let nlz77points = lz77splitpoints.len();

    /* Convert LZ77 positions to positions in the uncompressed input. */
    let mut pos = instart;
    if nlz77points > 0 {
        for (i, item) in store.litlens.iter().enumerate() {
            let length = item.size();
            if lz77splitpoints[splitpoints.len()] == i {
                splitpoints.push(pos);
                if splitpoints.len() == nlz77points {
                    break;
                }
            }
            pos += length;
        }
    }
    debug_assert_eq!(splitpoints.len(), nlz77points);
}