sophia_api/
triple.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
//! I define how [RDF triples](https://www.w3.org/TR/rdf11-concepts/#section-triples)
//! are represented in Sophia.
//!
//! I provide the main trait [`Triple`].
//!
//! An RDF triple expresses a single fact.
//! Its formed of three terms called *subject*, *predicate* and *object*.
//!
//! You can think of a triple as a sentence of the form
//! "subject verb complement"
//! (although the *predicate* is often better expressed as a relationship than a verb).
//! Examples :
//!
//! * John is a person.
//! * John was born in Paris.
//! * John knows Jane.
//! * John's family name is "Doe".
//!
use crate::quad::Spog;
use crate::term::{matcher::TermMatcher, GraphName, Term};

/// Type alias for terms borrowed from a triple.
pub type TBorrowTerm<'a, T> = <<T as Triple>::Term as Term>::BorrowTerm<'a>;

/// This trait represents an abstract RDF triple,
/// and provide convenient methods for working with triples.
pub trait Triple: Sized {
    /// The type of [`Term`] contained by this triple
    type Term: Term;

    /// The subject of this triple.
    fn s(&self) -> TBorrowTerm<Self>;

    /// The predicate of this triple.
    fn p(&self) -> TBorrowTerm<Self>;

    /// The object of this triple.
    fn o(&self) -> TBorrowTerm<Self>;

    /// The three components of this triple, as a triple of borrowed terms.
    ///
    /// See also [`Triple::to_spo`].
    #[inline]
    fn spo(&self) -> [TBorrowTerm<Self>; 3] {
        [self.s(), self.p(), self.o()]
    }

    /// Consume this triple, returning its subject.
    fn to_s(self) -> Self::Term {
        let [s, _, _] = self.to_spo();
        s
    }

    /// Consume this triple, returning its predicate.
    fn to_p(self) -> Self::Term {
        let [_, p, _] = self.to_spo();
        p
    }

    /// Consume this triple, returning its object.
    fn to_o(self) -> Self::Term {
        let [_, _, o] = self.to_spo();
        o
    }

    /// Consume this triple, returning all its components.
    ///
    /// See also [`Triple::spo`].
    fn to_spo(self) -> [Self::Term; 3];

    /// Checks that the constituents terms of this triple match the respective matchers.
    fn matched_by<S, P, O>(&self, sm: S, pm: P, om: O) -> bool
    where
        S: TermMatcher,
        P: TermMatcher,
        O: TermMatcher,
    {
        sm.matches(&self.s()) && pm.matches(&self.p()) && om.matches(&self.o())
    }

    /// Check whether `other` is term-wise equal (using [`Term::eq`]) to `self`.
    ///
    /// See also [`eq_spo`](Triple::eq_spo), [`matched_by`](Triple::matched_by).
    #[inline]
    fn eq<T: Triple>(&self, other: T) -> bool {
        self.eq_spo(other.s(), other.p(), other.o())
    }

    /// Check whether the triple (`s`, `p`, `o`) is term-wise equal (using [`Term::eq`]) to `self`.
    ///
    /// See also [`eq`](Triple::eq), [`matched_by`](Triple::matched_by).
    fn eq_spo<S: Term, P: Term, O: Term>(&self, s: S, p: P, o: O) -> bool {
        self.s().eq(s) && self.p().eq(p) && self.o().eq(o)
    }

    /// Convert this triple to a [`Quad`](crate::quad::Quad) in the default graph.
    ///
    /// NB: if you do not wish to consume this triple,
    /// you can combine this method with [`spo`](Triple::spo) as below:
    /// ```
    /// # use sophia_api::quad::Quad;
    /// # use sophia_api::triple::Triple;
    /// # fn test<T: Triple>(t: &T) -> impl Quad + '_ {
    ///     t.spo().into_quad()   
    /// # }
    /// ```
    ///
    /// See also [`Triple::into_quad_from`].
    fn into_quad(self) -> Spog<Self::Term> {
        (self.to_spo(), None)
    }

    /// Convert this triple to a [`Quad`](crate::quad::Quad) in the given named graph.
    ///
    /// See also [`Triple::into_quad`].
    fn into_quad_from(self, graph_name: GraphName<Self::Term>) -> Spog<Self::Term> {
        (self.to_spo(), graph_name)
    }
}

impl<T: Term> Triple for [T; 3] {
    type Term = T;

    fn s(&self) -> TBorrowTerm<Self> {
        self[0].borrow_term()
    }
    fn p(&self) -> TBorrowTerm<Self> {
        self[1].borrow_term()
    }
    fn o(&self) -> TBorrowTerm<Self> {
        self[2].borrow_term()
    }
    fn to_spo(self) -> [Self::Term; 3] {
        self
    }
}

#[cfg(test)]
mod check_implementability {
    use super::*;
    use crate::term::*;
    use mownstr::MownStr;

    #[derive(Clone, Copy, Debug)]
    struct MyBnode(usize);

    impl Term for MyBnode {
        type BorrowTerm<'x> = Self;

        fn kind(&self) -> TermKind {
            TermKind::BlankNode
        }
        fn bnode_id(&self) -> Option<BnodeId<MownStr>> {
            Some(BnodeId::new_unchecked(MownStr::from(format!(
                "b{}",
                self.0
            ))))
        }
        fn borrow_term(&self) -> Self::BorrowTerm<'_> {
            *self
        }
    }

    #[derive(Clone, Copy, Debug)]
    struct MyTriple([usize; 3]);

    impl Triple for MyTriple {
        type Term = MyBnode;

        fn s(&self) -> TBorrowTerm<Self> {
            MyBnode(self.0[0])
        }
        fn p(&self) -> TBorrowTerm<Self> {
            MyBnode(self.0[1])
        }
        fn o(&self) -> TBorrowTerm<Self> {
            MyBnode(self.0[2])
        }
        fn to_s(self) -> Self::Term {
            self.s()
        }
        fn to_p(self) -> Self::Term {
            self.p()
        }
        fn to_o(self) -> Self::Term {
            self.o()
        }
        fn to_spo(self) -> [Self::Term; 3] {
            [self.s(), self.p(), self.o()]
        }
    }

    #[allow(dead_code)] // only checks that this compiles
    fn check_triple_impl(t: [SimpleTerm; 3]) {
        fn foo<T: Triple>(t: T) {
            println!("{:?}", t.s().kind());
        }
        let rt = t.spo();
        foo(rt);
        {
            let rt2 = t.spo();
            foo(rt2);
        }
        foo(rt);
        foo(rt.spo());
        foo(t);

        let mt = MyTriple([1, 2, 3]);
        let rmt = mt.spo();
        foo(rmt);
        {
            let rmt2 = mt.spo();
            foo(rmt2);
        }
        foo(rmt);
        foo(rmt.spo());
        foo(mt);
    }
}

#[cfg(test)]
mod test_triple {
    use super::*;
    use crate::term::SimpleTerm;
    use sophia_iri::IriRef;

    const S: IriRef<&str> = IriRef::new_unchecked_const("tag:s");
    const P: IriRef<&str> = IriRef::new_unchecked_const("tag:o");
    const O: IriRef<&str> = IriRef::new_unchecked_const("tag:p");

    #[test]
    fn triple_matched_by() {
        use crate::term::matcher::Any;
        let t = [S, P, O];

        assert!(t.matched_by(Any, Any, Any));
        assert!(t.matched_by([S], [P], [O]));
        assert!(t.matched_by([O, S], [S, P], [P, O]));
        let istag = |t: SimpleTerm| t.iri().map(|iri| iri.starts_with("tag:")).unwrap_or(false);
        assert!(t.matched_by(istag, istag, istag));

        let none: Option<IriRef<&str>> = None;
        assert!(!t.matched_by(none, Any, Any));
        assert!(!t.matched_by(Any, none, Any));
        assert!(!t.matched_by(Any, Any, none));
        assert!(!t.matched_by([P, O], Any, Any));
        assert!(!t.matched_by(Any, [S, O], Any));
        assert!(!t.matched_by(Any, Any, [S, P]));
        let notag = |t: SimpleTerm| t.iri().map(|iri| !iri.starts_with("tag:")).unwrap_or(true);
        assert!(!t.matched_by(notag, Any, Any));
        assert!(!t.matched_by(Any, notag, Any));
        assert!(!t.matched_by(Any, Any, notag));

        let ts = vec![
            [S, P, S],
            [S, P, P],
            [S, P, O],
            [P, P, S],
            [P, P, P],
            [P, P, O],
            [O, P, S],
            [O, P, P],
            [O, P, O],
        ];
        let c = ts
            .iter()
            .filter(|t| t.matched_by([S, O], Any, [S, O]))
            .count();
        assert_eq!(c, 4);
    }
}