sophia_api/term.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
//! I define how RDF terms
//! (such as [IRIs](https://www.w3.org/TR/rdf11-concepts/#section-IRIs),
//! [blank nodes](https://www.w3.org/TR/rdf11-concepts/#section-blank-nodes)
//! and [literals](https://www.w3.org/TR/rdf11-concepts/#section-Graph-Literal))
//! are represented in Sophia.
//!
//! I provide the main trait [`Term`],
//! and a number of auxiliary types and traits, such as [`TermKind`], [`FromTerm`]...
use crate::triple::Triple;
use mownstr::MownStr;
use std::cmp::{Ord, Ordering};
use std::hash::Hash;
mod _cmp;
pub use _cmp::*;
mod _graph_name;
pub use _graph_name::*;
mod _native_iri;
pub use _native_iri::*;
mod _native_literal;
pub use _native_literal::*;
mod _simple;
pub use _simple::*;
pub mod bnode_id;
pub mod language_tag;
pub mod matcher;
pub mod var_name;
/// This type is aliased from `sophia_iri` for convenience,
/// as it is required to implement [`Term`].
pub type IriRef<T> = sophia_iri::IriRef<T>;
// The following two types are also re-exported for the same reason.
pub use bnode_id::BnodeId;
pub use language_tag::LanguageTag;
pub use var_name::VarName;
lazy_static::lazy_static! {
static ref RDF_LANG_STRING: Box<str> = crate::ns::rdf::langString.iri().unwrap().unwrap().into();
}
/// The different kinds of terms that a [`Term`] can represent.
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialOrd, PartialEq)]
pub enum TermKind {
/// An [RDF IRI](https://www.w3.org/TR/rdf11-concepts/#section-IRIs)
Iri,
/// An RDF [literal](https://www.w3.org/TR/rdf11-concepts/#section-Graph-Literal)
Literal,
/// An RDF [blank node](https://www.w3.org/TR/rdf11-concepts/#section-blank-nodes)
BlankNode,
/// An RDF-star [quoted triple](https://www.w3.org/2021/12/rdf-star.html#dfn-quoted)
Triple,
/// A SPARQL or Notation3 variable
Variable,
}
/// A [generalized] RDF term.
///
/// # Implementation
///
/// The only method without a default implementation is [`kind`](Term::kind),
/// which indicates what kind of RDF term a given [`Term`] represents.
///
/// However, while all other methods have a default implementtation (returning `None`),
/// those corresponding to the supported kinds MUST be overridden accordingly,
/// otherwise they will panic.
/// See below for an explaination of this design choice.
///
/// In order to test that all the methods are implemented consistently,
/// consider using the macro [`assert_consistent_term_impl`].
/// The macro should be invoked on various instances of the type,
/// at least one for each [kind](Term::kind) that the type supports.
///
/// # Design rationale
///
/// The methods defined by this trait are not independant:
/// depending on the value returned by [`kind`](Term::kind),
/// other methods are expected to return `Some(...)` or `None` accordingly.
///
/// An alternative solution would have been for the variants of [`TermKind`]
/// to *contain* the corresponding values.
/// This would arguably have been more idiomatic for users,
/// and less error-prone for implementors of this trait.
///
/// However, this would have caused performance issues in some cases,
/// because the [`MownStr`] returned by, e.g.,
/// [`iri`](Term::iri) or [`lexical_form`](Term::lexical_form),
/// can be allocated *on demand* by some implementations.
///
/// [generalized]: crate#generalized-vs-strict-rdf-model
pub trait Term: std::fmt::Debug {
/// A type of [`Term`] that can be borrowed from this type
/// (i.e. that can be obtained from a simple reference to this type).
/// It is used in particular for accessing constituents of quoted tripes ([`Term::triple`])
/// or for sharing this term with a function that expects `T: Term` (rather than `&T`)
/// using [`Term::borrow_term`].
///
/// In "standard" cases, this type is either `&Self` or `Self`
/// (for types implementing [`Copy`]).
///
/// # Note to implementors
/// * When in doubt, set `BorrowTerm<'x>` to `&'x Self`.
/// * If your type implements [`Copy`],
/// consider setting it to `Self`.
/// * If your type is a wrapper `W(T)` where `T: Term`,
/// consider setting it to `W(T::BorrowTerm<'x>)`.
/// * If none of the options above are possible, your type is probably not a good fit for implementing [`Term`].
type BorrowTerm<'x>: Term + Copy
where
Self: 'x;
/// Return the kind of RDF term that this [`Term`] represents.
fn kind(&self) -> TermKind;
/// Return true if this [`Term`] is an IRI,
/// i.e. if [`kind`](Term::kind) retuns [`TermKind::Iri`].
#[inline]
fn is_iri(&self) -> bool {
self.kind() == TermKind::Iri
}
/// Return true if this [`Term`] is a blank node,
/// i.e. if [`kind`](Term::kind) retuns [`TermKind::BlankNode`].
#[inline]
fn is_blank_node(&self) -> bool {
self.kind() == TermKind::BlankNode
}
/// Return true if this [`Term`] is a literal,
/// i.e. if [`kind`](Term::kind) retuns [`TermKind::Literal`].
#[inline]
fn is_literal(&self) -> bool {
self.kind() == TermKind::Literal
}
/// Return true if this [`Term`] is a variable,
/// i.e. if [`kind`](Term::kind) retuns [`TermKind::Variable`].
#[inline]
fn is_variable(&self) -> bool {
self.kind() == TermKind::Variable
}
/// Return true if this [`Term`] is an atomic term,
/// i.e. an [IRI](Term::is_iri),
/// a [blank node](Term::is_blank_node),
/// a [literal](Term::is_literal)
/// or a [variable](Term::is_variable).
#[inline]
fn is_atom(&self) -> bool {
use TermKind::*;
match self.kind() {
Iri | BlankNode | Literal | Variable => true,
Triple => false,
}
}
/// Return true if this [`Term`] is an RDF-star quoted triple,
/// i.e. if [`kind`](Term::kind) retuns [`TermKind::Triple`].
#[inline]
fn is_triple(&self) -> bool {
self.kind() == TermKind::Triple
}
/// If [`kind`](Term::kind) returns [`TermKind::Iri`],
/// return this IRI.
/// Otherwise return `None`.
///
/// # Note to implementors
/// The default implementation assumes that [`Term::is_iri`] always return false.
/// If that is not the case, this method must be explicit implemented.
#[inline]
fn iri(&self) -> Option<IriRef<MownStr>> {
self.is_iri()
.then(|| unimplemented!("Default implementation should have been overridden"))
}
/// If [`kind`](Term::kind) returns [`TermKind::BlankNode`],
/// return the locally unique label of this blank node.
/// Otherwise return `None`.
///
/// # Note to implementors
/// The default implementation assumes that [`Term::is_blank_node`] always return false.
/// If that is not the case, this method must be explicit implemented.
#[inline]
fn bnode_id(&self) -> Option<BnodeId<MownStr>> {
self.is_blank_node()
.then(|| unimplemented!("Default implementation should have been overridden"))
}
/// If [`kind`](Term::kind) returns [`TermKind::Literal`],
/// return the lexical form of this literal.
/// Otherwise return `None`.
///
/// # Note to implementors
/// The default implementation assumes that [`Term::is_literal`] always return false.
/// If that is not the case, this method must be explicit implemented.
#[inline]
fn lexical_form(&self) -> Option<MownStr> {
self.is_literal()
.then(|| unimplemented!("Default implementation should have been overridden"))
}
/// If [`kind`](Term::kind) returns [`TermKind::Literal`],
/// return the datatype IRI of this literal.
/// Otherwise return `None`.
///
/// NB: if this literal is a language-tagged string,
/// then this method MUST return `http://www.w3.org/1999/02/22-rdf-syntax-ns#langString`.
///
/// # Note to implementors
/// The default implementation assumes that [`Term::is_literal`] always return false.
/// If that is not the case, this method must be explicit implemented.
#[inline]
fn datatype(&self) -> Option<IriRef<MownStr>> {
self.is_literal()
.then(|| unimplemented!("Default implementation should have been overridden"))
}
/// If [`kind`](Term::kind) returns [`TermKind::Literal`],
/// and if this literal is a language-tagged string,
/// return its language tag.
/// Otherwise return `None`.
///
/// # Note to implementors
/// The default implementation assumes that [`Term::is_literal`] always return false.
/// If that is not the case, this method must be explicit implemented.
#[inline]
fn language_tag(&self) -> Option<LanguageTag<MownStr>> {
self.is_literal()
.then(|| unimplemented!("Default implementation should have been overridden"))
}
/// If [`kind`](Term::kind) returns [`TermKind::Variable`],
/// return the name of this variable.
/// Otherwise return `None`.
///
/// # Note to implementors
/// The default implementation assumes that [`Term::is_variable`] always return false.
/// If that is not the case, this method must be explicit implemented.
#[inline]
fn variable(&self) -> Option<VarName<MownStr>> {
self.is_variable()
.then(|| unimplemented!("Default implementation should have been overridden"))
}
/// If [`kind`](Term::kind) returns [`TermKind::Triple`],
/// return this triple.
/// Otherwise return `None`.
///
/// # Note to implementors
/// The default implementation assumes that [`Term::is_triple`] always return false.
/// If that is not the case, this method must be explicit implemented.
#[inline]
fn triple(&self) -> Option<[Self::BorrowTerm<'_>; 3]> {
self.is_triple()
.then(|| unimplemented!("Default implementation should have been overridden"))
}
/// If [`kind`](Term::kind) returns [`TermKind::Triple`],
/// return this triple, consuming this term.
/// Otherwise return `None`.
///
/// # Note to implementors
/// The default implementation assumes that [`Term::is_triple`] always return false.
/// If that is not the case, this method must be explicit implemented.
#[inline]
fn to_triple(self) -> Option<[Self; 3]>
where
Self: Sized,
{
self.is_triple()
.then(|| unimplemented!("Default implementation should have been overridden"))
}
/// Get something implementing [`Term`] from a simple reference to `self`,
/// representing the same RDF term as `self`.
///
/// # Wny do functions in Sophia expect `T: Term` and never `&T: Term`?
/// To understand the rationale of this design choice,
/// consider an imaginary type `Foo`.
/// A function `f(x: Foo)` requires users to waive the ownership of the `Foo` value they want to pass to the function.
/// This is not always suited to the users needs.
/// On the other hand, a function `g(x: &Foo)` not only allows, but *forces* its users to maintain ownership of the `Foo` value they want to pass to the function.
/// Again, there are situations where this is not suitable.
/// The standard solution to this problem is to use the [`Borrow`](std::borrow) trait:
/// a function `h<T>(x: T) where T: Borrow<Foo>` allows `x` to be passed either by *value* (transferring ownership)
/// or by reference (simply borrowing the caller's `Foo`).
///
/// While this design pattern is usable with a single type (`Foo` in our example above),
/// it is not usable with a trait, such as `Term`:
/// the following trait bound is not valid in Rust: `T: Borrow<Term>`.
/// Yet, we would like any function expecting a terms to be able to either take its ownership or simply borrow it,
/// depending on the caller's needs and preferences.
///
/// The `borrow_term` methods offer a solution to this problem,
/// and therefore the trait bound `T: Term` must be thought of as equivalent to `T: Borrow<Term>`:
/// the caller can chose to either waive ownership of its term (by passing it directly)
/// or keep it (by passing the result of `borrow_term()` instead).
fn borrow_term(&self) -> Self::BorrowTerm<'_>;
/// Iter over all the constituents of this term.
///
/// If this term is [atomic](Term::is_atom), the iterator yields only the term itself.
/// If it is a quoted triple, the iterator yields the quoted triple itself,
/// and the constituents of its subject, predicate and object.
fn constituents<'s>(&'s self) -> Box<dyn Iterator<Item = Self::BorrowTerm<'s>> + 's> {
let this_term = std::iter::once(self.borrow_term());
match self.triple() {
None => Box::new(this_term),
Some(triple) => {
Box::new(this_term.chain(triple.into_iter().flat_map(Term::to_constituents)))
}
}
}
/// Iter over all the constiutents of this term, consuming it.
///
/// See [Term::constituents].
fn to_constituents<'a>(self) -> Box<dyn Iterator<Item = Self> + 'a>
where
Self: Clone + 'a,
{
if !self.is_triple() {
Box::new(std::iter::once(self))
} else {
Box::new(
std::iter::once(self.clone()).chain(
self.to_triple()
.unwrap()
.into_iter()
.flat_map(Term::to_constituents),
),
)
}
}
/// Iter over all the [atomic] constituents of this term.
///
/// If this term is [atomic], the iterator yields only the term itself.
/// If it is a quoted triple, the iterator yields the atoms of its subject, predicate and object.
///
/// [atomic]: Term::is_atom
fn atoms<'s>(&'s self) -> Box<dyn Iterator<Item = Self::BorrowTerm<'s>> + 's> {
match self.triple() {
None => Box::new(std::iter::once(self.borrow_term())),
Some(triple) => Box::new(triple.into_iter().flat_map(Term::to_atoms)),
}
}
/// Iter over all the [atomic](Term::is_atom) constituents of this term, consuming it.
///
/// See [Term::atoms].
fn to_atoms<'a>(self) -> Box<dyn Iterator<Item = Self> + 'a>
where
Self: Sized + 'a,
{
if !self.is_triple() {
Box::new(std::iter::once(self))
} else {
Box::new(
self.to_triple()
.unwrap()
.into_iter()
.flat_map(Term::to_atoms),
)
}
}
/// Check whether `self` and `other` represent the same RDF term.
fn eq<T: Term>(&self, other: T) -> bool {
let k1 = self.kind();
let k2 = other.kind();
if k1 != k2 {
return false;
}
match k1 {
TermKind::Iri => self.iri() == other.iri(),
TermKind::BlankNode => self.bnode_id() == other.bnode_id(),
TermKind::Literal => {
self.lexical_form() == other.lexical_form()
&& match (self.language_tag(), other.language_tag()) {
(None, None) => self.datatype() == other.datatype(),
(Some(tag1), Some(tag2)) if tag1 == tag2 => true,
_ => false,
}
}
TermKind::Triple => self.triple().unwrap().eq(other.triple().unwrap()),
TermKind::Variable => self.variable() == other.variable(),
}
}
/// Compare two terms:
/// * IRIs < literals < blank nodes < quoted triples < variables
/// * IRIs, blank nodes and variables are ordered by their value
/// * Literals are ordered by their datatype, then their language (if any),
/// then their lexical form
/// * Quoted triples are ordered in lexicographical order
///
/// NB: literals are ordered by their *lexical* value,
/// so for example, `"10"^^xsd:integer` comes *before* `"2"^^xsd:integer`.
fn cmp<T>(&self, other: T) -> Ordering
where
T: Term,
{
let k1 = self.kind();
let k2 = other.kind();
k1.cmp(&k2).then_with(|| match k1 {
TermKind::Iri => Ord::cmp(&self.iri().unwrap(), &other.iri().unwrap()),
TermKind::BlankNode => Ord::cmp(&self.bnode_id().unwrap(), &other.bnode_id().unwrap()),
TermKind::Variable => Ord::cmp(&self.variable().unwrap(), &other.variable().unwrap()),
TermKind::Literal => {
let tag1 = self.language_tag();
let tag2 = other.language_tag();
if let (Some(tag1), Some(tag2)) = (tag1, tag2) {
tag1.cmp(&tag2).then_with(|| {
self.lexical_form()
.unwrap()
.cmp(&other.lexical_form().unwrap())
})
} else {
let dt1 = self.datatype().unwrap();
let dt2 = other.datatype().unwrap();
Ord::cmp(&dt1, &dt2).then_with(|| {
self.lexical_form()
.unwrap()
.cmp(&other.lexical_form().unwrap())
})
}
}
TermKind::Triple => {
let spo1 = self.triple().unwrap();
let spo2 = other.triple().unwrap();
Term::cmp(&spo1[0], spo2[0])
.then_with(|| Term::cmp(&spo1[1], spo2[1]))
.then_with(|| Term::cmp(&spo1[2], spo2[2]))
}
})
}
/// Compute an implementation-independant hash of this RDF term.
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
let k = self.kind();
k.hash(state);
match k {
TermKind::Iri => Hash::hash(self.iri().unwrap().as_str(), state),
TermKind::BlankNode => Hash::hash(self.bnode_id().unwrap().as_str(), state),
TermKind::Literal => {
self.lexical_form().unwrap().hash(state);
match self.language_tag() {
None => {
Hash::hash(self.datatype().unwrap().as_str(), state);
}
Some(tag) => {
'@'.hash(state);
tag.hash(state);
}
}
}
TermKind::Triple => {
let t = self.triple().unwrap();
t.s().hash(state);
t.p().hash(state);
t.o().hash(state);
}
TermKind::Variable => Hash::hash(self.variable().unwrap().as_str(), state),
}
}
/// Convert this term in another type.
///
/// This method is to [`FromTerm`] what [`Into::into`] is to [`From`].
///
/// NB: if you want to make a *copy* of this term without consuming it,
/// you can use `this_term.`[`borrow_term`](Term::borrow_term)`().into_term::<T>()`.
#[inline]
fn into_term<T: FromTerm>(self) -> T
where
Self: Sized,
{
T::from_term(self)
}
/// Try to convert this term into another type.
///
/// This method is to [`TryFromTerm`] what [`TryInto::try_into`] is to [`TryFrom`].
///
/// NB: if you want to make a *copy* of this term without consuming it,
/// you can use `this_term.`[`borrow_term`](Term::borrow_term)`().try_into_term::<T>()`.
#[inline]
fn try_into_term<T: TryFromTerm>(self) -> Result<T, T::Error>
where
Self: Sized,
{
T::try_from_term(self)
}
/// Copies this term into a [`SimpleTerm`],
/// borrowing as much as possible from `self`
/// (calling [`SimpleTerm::from_term_ref`]).
#[inline]
fn as_simple(&self) -> SimpleTerm<'_> {
SimpleTerm::from_term_ref(self)
}
}
impl<'a, T> Term for &'a T
where
T: Term<BorrowTerm<'a> = &'a T> + ?Sized,
{
type BorrowTerm<'x> = Self where 'a: 'x;
fn kind(&self) -> TermKind {
(*self).kind()
}
fn is_iri(&self) -> bool {
(*self).is_iri()
}
fn is_blank_node(&self) -> bool {
(*self).is_blank_node()
}
fn is_literal(&self) -> bool {
(*self).is_literal()
}
fn is_variable(&self) -> bool {
(*self).is_variable()
}
fn is_triple(&self) -> bool {
(*self).is_triple()
}
fn iri(&self) -> Option<IriRef<MownStr>> {
(*self).iri()
}
fn bnode_id(&self) -> Option<BnodeId<MownStr>> {
(*self).bnode_id()
}
fn lexical_form(&self) -> Option<MownStr> {
(*self).lexical_form()
}
fn datatype(&self) -> Option<IriRef<MownStr>> {
(*self).datatype()
}
fn language_tag(&self) -> Option<LanguageTag<MownStr>> {
(*self).language_tag()
}
fn variable(&self) -> Option<VarName<MownStr>> {
(*self).variable()
}
fn triple(&self) -> Option<[Self::BorrowTerm<'_>; 3]> {
(*self).triple()
}
fn to_triple(self) -> Option<[Self; 3]> {
(*self).triple()
}
fn borrow_term(&self) -> Self::BorrowTerm<'_> {
*self
}
fn eq<U: Term>(&self, other: U) -> bool {
(*self).eq(other)
}
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
(*self).hash(state)
}
}
//
/// A type that can be built from any term.
///
/// See also [`TryFromTerm`]
pub trait FromTerm: Sized {
/// Copy `term` into an instance of this type.
fn from_term<T: Term>(term: T) -> Self;
}
/// A type that can be built from some terms.
///
/// See also [`FromTerm`]
pub trait TryFromTerm: Sized {
/// The error type produced when failing to copy a given term
type Error: 'static + std::error::Error;
/// Try to copy `term` into an instance of this type.
fn try_from_term<T: Term>(term: T) -> Result<Self, Self::Error>;
}
/// Test that the given term is consistent in its implementation of the [`Term`] trait.
///
/// NB: it may be necessary to explicitly specify the parameter `T`,
/// even when the type of `t` is known. E.g.: ``assert_consistent_term_impl::<MyTerm>(&t)``.
pub fn assert_consistent_term_impl<T>(t: &T)
where
T: Term + Clone,
{
let k = t.kind();
if k == TermKind::Iri {
assert!(t.is_iri());
assert!(t.iri().is_some());
} else {
assert!(!t.is_iri());
assert!(t.iri().is_none());
}
if k == TermKind::BlankNode {
assert!(t.is_blank_node());
assert!(t.bnode_id().is_some());
} else {
assert!(!t.is_blank_node());
assert!(t.bnode_id().is_none());
}
if k == TermKind::Literal {
assert!(t.is_literal());
assert!(t.lexical_form().is_some());
assert!(t.datatype().is_some());
if t.datatype() == crate::ns::rdf::langString.iri() {
assert!(t.language_tag().is_some());
} else {
assert!(t.language_tag().is_none());
}
} else {
assert!(!t.is_literal());
assert!(t.lexical_form().is_none());
assert!(t.datatype().is_none());
assert!(t.language_tag().is_none());
}
if k == TermKind::Variable {
assert!(t.is_variable());
assert!(t.variable().is_some());
} else {
assert!(!t.is_variable());
assert!(t.variable().is_none());
}
if k == TermKind::Triple {
assert!(t.is_triple());
assert!(t.triple().is_some());
assert!(t.clone().to_triple().is_some());
} else {
assert!(!t.is_triple());
assert!(t.triple().is_none());
assert!(t.clone().to_triple().is_none());
}
if k != TermKind::Triple {
assert!(t.is_atom());
assert!(t.constituents().count() == 1);
assert!(t.constituents().next().unwrap().eq(t.borrow_term()));
assert!(t.clone().to_constituents().count() == 1);
assert!(t.clone().to_constituents().next().unwrap().eq(t.clone()));
assert!(t.atoms().count() == 1);
assert!(t.atoms().next().unwrap().eq(t.borrow_term()));
assert!(t.clone().to_atoms().count() == 1);
assert!(t.clone().to_atoms().next().unwrap().eq(t.clone()));
} else {
assert!(!t.is_atom());
assert!(t.constituents().count() >= 4);
assert!(t.clone().to_constituents().count() >= 4);
assert!(t.atoms().count() >= 3);
assert!(t.clone().to_atoms().count() >= 3);
}
t.eq(t.borrow_term());
}
#[cfg(test)]
mod check_implementability {
use super::*;
// three different implementations of Term using different strategies for Self::Triple
#[derive(Clone, Copy, Debug)]
struct Term1 {
nested: bool,
}
const BN1: Term1 = Term1 { nested: false };
impl Term for Term1 {
type BorrowTerm<'x> = Self;
fn kind(&self) -> TermKind {
match self.nested {
false => TermKind::BlankNode,
true => TermKind::Triple,
}
}
fn bnode_id(&self) -> Option<BnodeId<MownStr>> {
(!self.nested).then(|| BnodeId::new_unchecked("t1".into()))
}
fn triple(&self) -> Option<[Self::BorrowTerm<'_>; 3]> {
self.nested.then_some([BN1, BN1, BN1])
}
fn borrow_term(&self) -> Self::BorrowTerm<'_> {
*self
}
}
#[derive(Clone, Copy, Debug)]
struct Term2 {
nested: bool,
}
const BN2: Term2 = Term2 { nested: false };
impl Term for Term2 {
type BorrowTerm<'x> = &'x Self;
fn kind(&self) -> TermKind {
match self.nested {
false => TermKind::BlankNode,
true => TermKind::Triple,
}
}
fn bnode_id(&self) -> Option<BnodeId<MownStr>> {
(!self.nested).then(|| BnodeId::new_unchecked("t2".into()))
}
fn triple(&self) -> Option<[Self::BorrowTerm<'_>; 3]> {
self.nested.then_some([&BN2, &BN2, &BN2])
}
fn borrow_term(&self) -> Self::BorrowTerm<'_> {
self
}
}
#[derive(Clone, Debug)]
struct Term3(Option<Box<[Term3; 3]>>);
impl Term for Term3 {
type BorrowTerm<'x> = &'x Self;
fn kind(&self) -> TermKind {
match self.0 {
None => TermKind::BlankNode,
Some(_) => TermKind::Triple,
}
}
fn bnode_id(&self) -> Option<BnodeId<MownStr>> {
match self.0 {
None => Some(BnodeId::new_unchecked("t3".into())),
Some(_) => None,
}
}
fn triple(&self) -> Option<[Self::BorrowTerm<'_>; 3]> {
if let Some(b) = &self.0 {
let [s, p, o] = b.as_ref();
Some([s, p, o])
} else {
None
}
}
fn borrow_term(&self) -> Self::BorrowTerm<'_> {
self
}
}
}
#[cfg(test)]
/// Simplistic Term parser, useful for writing test cases.
/// The syntax is a subset of Turtle-star.
pub(crate) fn ez_term(txt: &str) -> SimpleTerm {
use sophia_iri::IriRef;
match txt.as_bytes() {
[b'<', b'<', .., b'>', b'>'] => {
let subterms: Vec<&str> = txt[2..txt.len() - 2].split(' ').collect();
assert_eq!(subterms.len(), 3);
SimpleTerm::Triple(Box::new([
ez_term(subterms[0]),
ez_term(subterms[1]),
ez_term(subterms[2]),
]))
}
[b'<', .., b'>'] => IriRef::new_unchecked(&txt[1..txt.len() - 1]).into_term(),
[b':', ..] => {
let iri = format!("tag:{}", &txt[1..]);
SimpleTerm::Iri(IriRef::new_unchecked(iri.into()))
}
[b'_', b':', ..] => BnodeId::new_unchecked(&txt[2..]).into_term(),
[b'\'', .., b'\''] => (&txt[1..txt.len() - 1]).into_term(),
[b'\'', .., b'\'', b'@', _, _] => SimpleTerm::LiteralLanguage(
(&txt[1..txt.len() - 4]).into(),
LanguageTag::new_unchecked(txt[txt.len() - 2..].into()),
),
[c, ..] if c.is_ascii_digit() => txt.parse::<i32>().unwrap().into_term(),
[b'?', ..] => VarName::new_unchecked(&txt[1..]).into_term(),
_ => panic!("Unable to parse term"),
}
}
#[cfg(test)]
mod test_term_impl {
use super::*;
use test_case::test_case;
// order with terms of the same kind
#[test_case("<tag:a>", "<tag:b>")]
#[test_case("_:u", "_:v")]
#[test_case("'a'", "'b'")]
#[test_case("10", "2")]
#[test_case("'a'@en", "'a'@fr")]
#[test_case("?x", "?y")]
#[test_case("<<_:s <tag:p> 'o1'>>", "<<_:s <tag:p> 'o2'>>")]
#[test_case("<<_:s <tag:p1> 'o2'>>", "<<_:s <tag:p2> 'o1'>>")]
#[test_case("<<_:s1 <tag:p2> 'o'>>", "<<_:s2 <tag:p1> 'o'>>")]
// order across different literals
#[test_case("2", "'10'")]
#[test_case("'b'@en", "'a'")]
// order across term kinds
#[test_case("<tag:a>", "'s'")]
#[test_case("<tag:a>", "_:r")]
#[test_case("<tag:a>", "<<_:q <tag:q> 'q'>>")]
#[test_case("<tag:a>", "?p")]
#[test_case("'s'", "_:r")]
#[test_case("'s'", "<<_:q <tag:q> 'q'>>")]
#[test_case("'s'", "?p")]
#[test_case("_:r", "<<_:q <tag:q> 'q'>>")]
#[test_case("_:r", "?p")]
#[test_case("<<_:q <tag:q> 'q'>>", "?p")]
fn cmp_terms(t1: &str, t2: &str) {
let t1 = ez_term(t1);
let t2 = ez_term(t2);
assert_eq!(Term::cmp(&t1, &t1), std::cmp::Ordering::Equal);
assert_eq!(Term::cmp(&t2, &t2), std::cmp::Ordering::Equal);
assert_eq!(Term::cmp(&t1, &t2), std::cmp::Ordering::Less);
assert_eq!(Term::cmp(&t2, &t1), std::cmp::Ordering::Greater);
}
}