rbe/
deriv_n.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
use itertools::cloned;
use std::fmt::Debug;

/// Return an iterator that generates variants of the vector applying to each
/// element the function `F`
///
/// In case the value of `F` is None, the row will be skipped while if the value is `Some(x)`, then the corresponding element will be replaced by `x`.
///
/// ```
/// use rbe::deriv_n;
///
/// let vec = vec![1,2,3];
/// let sets = deriv_n(vec, |x: &i32| { Some(x + 100)}).collect::<Vec<_>>();
/// assert_eq!(sets, vec![
///   vec![101, 2, 3],
///   vec![1, 102, 3],
///   vec![1, 2, 103]
/// ])
///
/// ```
///
/// A similar example which doesn't generate iterator for the value 2
///
/// ```
/// use rbe::deriv_n;
///
/// let vec = vec![1,2,3];
/// let sets = deriv_n(vec, |x: &i32| {
///   match &x {
///     2 => None,
///     _ => Some(x + 100)
///   }
/// }).collect::<Vec<_>>();
/// assert_eq!(sets, vec![
///   vec![101, 2, 3],
///   vec![1, 2, 103]
/// ])
///
/// ```
pub fn deriv_n<T, F>(v: Vec<T>, d: F) -> DerivN<T, F> {
    DerivN {
        source: v,
        pos: 0,
        deriv: d,
    }
}

/// An adaptor of a `Vec<T>` that generates an iterator that contains variants of the vector
/// applying function `F` to each element.
///
/// The function `F` returns an `Option<T>` which means that if it returns `None`
/// that row is skipped while if it returns `Some(x)` then that value will be replaced by `x`.
///
///
pub struct DerivN<T, F> {
    source: Vec<T>,
    pos: usize,
    deriv: F,
}

impl<T, F: FnMut(&T) -> Option<T>> Iterator for DerivN<T, F>
where
    T: Clone + Debug,
{
    type Item = Vec<T>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.pos < self.source.len() {
            let mut cloned: Vec<T> = cloned(self.source.iter()).collect();
            let current = &cloned[self.pos];
            match (self.deriv)(current) {
                None => {
                    // If it returns None we continue with the next position
                    self.pos += 1;
                    Self::next(self)
                }
                Some(d) => {
                    cloned[self.pos] = d;
                    self.pos += 1;
                    Some(cloned)
                }
            }
        } else {
            None
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::deriv_n;

    #[test]
    fn example_deriv_n() {
        let vec = vec![1, 2, 3];

        let sets = deriv_n(vec, |x: &i32| Some(x + 100)).collect::<Vec<_>>();
        assert_eq!(
            sets,
            vec![vec![101, 2, 3], vec![1, 102, 3], vec![1, 2, 103]]
        )
    }

    #[test]
    fn test_deriv_n() {
        #[derive(Debug, Clone, PartialEq)]
        enum R {
            A(i32),
            B(i32),
            C(i32),
            D(Box<R>),
        }

        impl R {
            fn deriv(&self) -> Option<R> {
                match *self {
                    R::C(_) => None,
                    _ => Some(R::D(Box::new(self.clone()))),
                }
            }
        }

        let vs: Vec<R> = vec![R::A(1), R::B(2), R::C(4), R::A(3)];
        let mut results = deriv_n(vs, R::deriv);
        assert_eq!(
            vec![R::D(Box::new(R::A(1))), R::B(2), R::C(4), R::A(3)],
            results.next().unwrap()
        );
        assert_eq!(
            vec![R::A(1), R::D(Box::new(R::B(2))), R::C(4), R::A(3)],
            results.next().unwrap()
        );
        assert_eq!(
            vec![R::A(1), R::B(2), R::C(4), R::D(Box::new(R::A(3)))],
            results.next().unwrap()
        );
        assert_eq!(None, results.next());
    }
}