use crate::model::vocab::{rdf, xsd};
use crate::model::{BlankNode, LiteralRef, NamedNodeRef, Term, Triple};
use crate::sparql::algebra::{Query, QueryDataset};
use crate::sparql::dataset::DatasetView;
use crate::sparql::error::EvaluationError;
use crate::sparql::model::*;
use crate::sparql::service::ServiceHandler;
use crate::sparql::CustomFunctionRegistry;
use crate::storage::numeric_encoder::*;
use crate::storage::small_string::SmallString;
use digest::Digest;
use json_event_parser::{JsonEvent, ToWriteJsonWriter};
use md5::Md5;
use oxilangtag::LanguageTag;
use oxiri::Iri;
use oxrdf::{TermRef, Variable};
use oxsdatatypes::*;
use rand::random;
use regex::{Regex, RegexBuilder};
use rustc_hash::{FxBuildHasher, FxHashMap, FxHashSet};
use sha1::Sha1;
use sha2::{Sha256, Sha384, Sha512};
use spargebra::algebra::{AggregateFunction, Function, PropertyPathExpression};
use spargebra::term::{
GroundSubject, GroundTerm, GroundTermPattern, GroundTriple, NamedNodePattern, TermPattern,
TriplePattern,
};
use sparopt::algebra::{
AggregateExpression, Expression, GraphPattern, JoinAlgorithm, LeftJoinAlgorithm,
MinusAlgorithm, OrderExpression,
};
use std::cell::Cell;
use std::cmp::Ordering;
use std::collections::hash_map::DefaultHasher;
use std::hash::{Hash, Hasher};
use std::iter::{empty, once, Peekable};
use std::rc::Rc;
use std::sync::Arc;
use std::{fmt, io, str};
const REGEX_SIZE_LIMIT: usize = 1_000_000;
#[derive(Eq, PartialEq, Debug, Clone, Hash)]
pub struct EncodedTuple {
inner: Vec<Option<EncodedTerm>>,
}
impl EncodedTuple {
pub fn with_capacity(capacity: usize) -> Self {
Self {
inner: Vec::with_capacity(capacity),
}
}
pub fn capacity(&self) -> usize {
self.inner.capacity()
}
pub fn contains(&self, index: usize) -> bool {
self.inner.get(index).map_or(false, Option::is_some)
}
pub fn get(&self, index: usize) -> Option<&EncodedTerm> {
self.inner.get(index).unwrap_or(&None).as_ref()
}
pub fn iter(&self) -> impl Iterator<Item = Option<EncodedTerm>> + '_ {
self.inner.iter().cloned()
}
pub fn set(&mut self, index: usize, value: EncodedTerm) {
if self.inner.len() <= index {
self.inner.resize(index + 1, None);
}
self.inner[index] = Some(value);
}
pub fn combine_with(&self, other: &Self) -> Option<Self> {
if self.inner.len() < other.inner.len() {
let mut result = other.inner.clone();
for (key, self_value) in self.inner.iter().enumerate() {
if let Some(self_value) = self_value {
match &other.inner[key] {
Some(other_value) => {
if self_value != other_value {
return None;
}
}
None => result[key] = Some(self_value.clone()),
}
}
}
Some(Self { inner: result })
} else {
let mut result = self.inner.clone();
for (key, other_value) in other.inner.iter().enumerate() {
if let Some(other_value) = other_value {
match &self.inner[key] {
Some(self_value) => {
if self_value != other_value {
return None;
}
}
None => result[key] = Some(other_value.clone()),
}
}
}
Some(Self { inner: result })
}
}
}
impl IntoIterator for EncodedTuple {
type Item = Option<EncodedTerm>;
type IntoIter = std::vec::IntoIter<Option<EncodedTerm>>;
fn into_iter(self) -> Self::IntoIter {
self.inner.into_iter()
}
}
type EncodedTuplesIterator = Box<dyn Iterator<Item = Result<EncodedTuple, EvaluationError>>>;
#[derive(Clone)]
pub struct SimpleEvaluator {
dataset: Rc<DatasetView>,
base_iri: Option<Rc<Iri<String>>>,
now: DateTime,
service_handler: Arc<dyn ServiceHandler<Error = EvaluationError>>,
custom_functions: Arc<CustomFunctionRegistry>,
run_stats: bool,
}
impl SimpleEvaluator {
pub fn new(
dataset: Rc<DatasetView>,
base_iri: Option<Rc<Iri<String>>>,
service_handler: Arc<dyn ServiceHandler<Error = EvaluationError>>,
custom_functions: Arc<CustomFunctionRegistry>,
run_stats: bool,
) -> Self {
Self {
dataset,
base_iri,
now: DateTime::now(),
service_handler,
custom_functions,
run_stats,
}
}
pub fn evaluate_select(&self, pattern: &GraphPattern) -> (QueryResults, Rc<EvalNodeWithStats>) {
let mut variables = Vec::new();
let (eval, stats) = self.graph_pattern_evaluator(pattern, &mut variables);
let from = EncodedTuple::with_capacity(variables.len());
(
QueryResults::Solutions(decode_bindings(
Rc::clone(&self.dataset),
eval(from),
Arc::from(variables),
)),
stats,
)
}
pub fn evaluate_ask(
&self,
pattern: &GraphPattern,
) -> (Result<QueryResults, EvaluationError>, Rc<EvalNodeWithStats>) {
let mut variables = Vec::new();
let (eval, stats) = self.graph_pattern_evaluator(pattern, &mut variables);
let from = EncodedTuple::with_capacity(variables.len());
let mut error = None;
for solution in eval(from) {
if let Err(e) = solution {
error.get_or_insert(e);
} else {
return (Ok(QueryResults::Boolean(true)), stats);
}
}
(
if let Some(e) = error {
Err(e)
} else {
Ok(QueryResults::Boolean(false))
},
stats,
)
}
pub fn evaluate_construct(
&self,
pattern: &GraphPattern,
template: &[TriplePattern],
) -> (QueryResults, Rc<EvalNodeWithStats>) {
let mut variables = Vec::new();
let (eval, stats) = self.graph_pattern_evaluator(pattern, &mut variables);
let mut bnodes = Vec::new();
let template = template
.iter()
.map(|t| TripleTemplate {
subject: self.template_value_from_term_or_variable(
&t.subject,
&mut variables,
&mut bnodes,
),
predicate: self
.template_value_from_named_node_or_variable(&t.predicate, &mut variables),
object: self.template_value_from_term_or_variable(
&t.object,
&mut variables,
&mut bnodes,
),
})
.collect();
let from = EncodedTuple::with_capacity(variables.len());
(
QueryResults::Graph(QueryTripleIter::new(ConstructIterator {
eval: self.clone(),
iter: eval(from),
template,
buffered_results: Vec::default(),
already_emitted_results: FxHashSet::default(),
bnodes: Vec::default(),
})),
stats,
)
}
pub fn evaluate_describe(
&self,
pattern: &GraphPattern,
) -> (QueryResults, Rc<EvalNodeWithStats>) {
let mut variables = Vec::new();
let (eval, stats) = self.graph_pattern_evaluator(pattern, &mut variables);
let from = EncodedTuple::with_capacity(variables.len());
(
QueryResults::Graph(QueryTripleIter::new(DescribeIterator {
eval: self.clone(),
tuples_to_describe: eval(from),
nodes_described: FxHashSet::default(),
nodes_to_describe: Vec::default(),
quads: Box::new(empty()),
})),
stats,
)
}
pub fn graph_pattern_evaluator(
&self,
pattern: &GraphPattern,
encoded_variables: &mut Vec<Variable>,
) -> (
Rc<dyn Fn(EncodedTuple) -> EncodedTuplesIterator>,
Rc<EvalNodeWithStats>,
) {
let mut stat_children = Vec::new();
let mut evaluator =
self.build_graph_pattern_evaluator(pattern, encoded_variables, &mut stat_children);
let stats = Rc::new(EvalNodeWithStats {
label: eval_node_label(pattern),
children: stat_children,
exec_count: Cell::new(0),
exec_duration: Cell::new(self.run_stats.then(DayTimeDuration::default)),
});
if self.run_stats {
let stats = Rc::clone(&stats);
evaluator = Rc::new(move |tuple| {
let start = Timer::now();
let inner = evaluator(tuple);
stats.exec_duration.set(
stats
.exec_duration
.get()
.and_then(|stat| stat.checked_add(start.elapsed()?)),
);
Box::new(StatsIterator {
inner,
stats: Rc::clone(&stats),
})
})
}
(evaluator, stats)
}
fn build_graph_pattern_evaluator(
&self,
pattern: &GraphPattern,
encoded_variables: &mut Vec<Variable>,
stat_children: &mut Vec<Rc<EvalNodeWithStats>>,
) -> Rc<dyn Fn(EncodedTuple) -> EncodedTuplesIterator> {
match pattern {
GraphPattern::Values {
variables,
bindings,
} => {
let encoding = variables
.iter()
.map(|v| encode_variable(encoded_variables, v))
.collect::<Vec<_>>();
let encoded_tuples = bindings
.iter()
.map(|row| {
let mut result = EncodedTuple::with_capacity(variables.len());
for (key, value) in row.iter().enumerate() {
if let Some(term) = value {
result.set(
encoding[key],
match term {
GroundTerm::NamedNode(node) => self.encode_term(node),
GroundTerm::Literal(literal) => self.encode_term(literal),
GroundTerm::Triple(triple) => self.encode_triple(triple),
},
);
}
}
result
})
.collect::<Vec<_>>();
Rc::new(move |from| {
Box::new(
encoded_tuples
.iter()
.filter_map(move |t| Some(Ok(t.combine_with(&from)?)))
.collect::<Vec<_>>()
.into_iter(),
)
})
}
GraphPattern::Service {
name,
inner,
silent,
} => {
#[allow(clippy::shadow_same)]
let silent = *silent;
let service_name =
TupleSelector::from_named_node_pattern(name, encoded_variables, &self.dataset);
self.build_graph_pattern_evaluator(inner, encoded_variables, &mut Vec::new()); let graph_pattern = spargebra::algebra::GraphPattern::from(inner.as_ref());
let variables = Rc::from(encoded_variables.as_slice());
let eval = self.clone();
Rc::new(move |from| {
match eval.evaluate_service(
&service_name,
&graph_pattern,
Rc::clone(&variables),
&from,
) {
Ok(result) => Box::new(result.filter_map(move |binding| {
binding
.map(|binding| binding.combine_with(&from))
.transpose()
})),
Err(e) => {
if silent {
Box::new(once(Ok(from)))
} else {
Box::new(once(Err(e)))
}
}
}
})
}
GraphPattern::QuadPattern {
subject,
predicate,
object,
graph_name,
} => {
let subject = TupleSelector::from_ground_term_pattern(
subject,
encoded_variables,
&self.dataset,
);
let predicate = TupleSelector::from_named_node_pattern(
predicate,
encoded_variables,
&self.dataset,
);
let object = TupleSelector::from_ground_term_pattern(
object,
encoded_variables,
&self.dataset,
);
let graph_name = TupleSelector::from_graph_name_pattern(
graph_name,
encoded_variables,
&self.dataset,
);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |from| {
let iter = dataset.encoded_quads_for_pattern(
subject.get_pattern_value(&from).as_ref(),
predicate.get_pattern_value(&from).as_ref(),
object.get_pattern_value(&from).as_ref(),
graph_name.get_pattern_value(&from).as_ref(),
);
let subject = subject.clone();
let predicate = predicate.clone();
let object = object.clone();
let graph_name = graph_name.clone();
Box::new(iter.filter_map(move |quad| match quad {
Ok(quad) => {
let mut new_tuple = from.clone();
put_pattern_value(&subject, quad.subject, &mut new_tuple)?;
put_pattern_value(&predicate, quad.predicate, &mut new_tuple)?;
put_pattern_value(&object, quad.object, &mut new_tuple)?;
put_pattern_value(&graph_name, quad.graph_name, &mut new_tuple)?;
Some(Ok(new_tuple))
}
Err(error) => Some(Err(error)),
}))
})
}
GraphPattern::Path {
subject,
path,
object,
graph_name,
} => {
let subject = TupleSelector::from_ground_term_pattern(
subject,
encoded_variables,
&self.dataset,
);
let path = self.encode_property_path(path);
let object = TupleSelector::from_ground_term_pattern(
object,
encoded_variables,
&self.dataset,
);
let graph_name = TupleSelector::from_graph_name_pattern(
graph_name,
encoded_variables,
&self.dataset,
);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |from| {
let input_subject = subject.get_pattern_value(&from);
let input_object = object.get_pattern_value(&from);
let input_graph_name = graph_name.get_pattern_value(&from);
let path_eval = PathEvaluator {
dataset: Rc::clone(&dataset),
};
match (input_subject, input_object, input_graph_name) {
(Some(input_subject), Some(input_object), Some(input_graph_name)) => {
match path_eval.eval_closed_in_graph(
&path,
&input_subject,
&input_object,
&input_graph_name,
) {
Ok(true) => Box::new(once(Ok(from))),
Ok(false) => Box::new(empty()),
Err(e) => Box::new(once(Err(e))),
}
}
(Some(input_subject), None, Some(input_graph_name)) => {
let object = object.clone();
Box::new(
path_eval
.eval_from_in_graph(&path, &input_subject, &input_graph_name)
.filter_map(move |o| match o {
Ok(o) => {
let mut new_tuple = from.clone();
put_pattern_value(&object, o, &mut new_tuple)?;
Some(Ok(new_tuple))
}
Err(error) => Some(Err(error)),
}),
)
}
(None, Some(input_object), Some(input_graph_name)) => {
let subject = subject.clone();
Box::new(
path_eval
.eval_to_in_graph(&path, &input_object, &input_graph_name)
.filter_map(move |s| match s {
Ok(s) => {
let mut new_tuple = from.clone();
put_pattern_value(&subject, s, &mut new_tuple)?;
Some(Ok(new_tuple))
}
Err(error) => Some(Err(error)),
}),
)
}
(None, None, Some(input_graph_name)) => {
let subject = subject.clone();
let object = object.clone();
Box::new(
path_eval
.eval_open_in_graph(&path, &input_graph_name)
.filter_map(move |so| match so {
Ok((s, o)) => {
let mut new_tuple = from.clone();
put_pattern_value(&subject, s, &mut new_tuple)?;
put_pattern_value(&object, o, &mut new_tuple)?;
Some(Ok(new_tuple))
}
Err(error) => Some(Err(error)),
}),
)
}
(Some(input_subject), Some(input_object), None) => {
let graph_name = graph_name.clone();
Box::new(
path_eval
.eval_closed_in_unknown_graph(
&path,
&input_subject,
&input_object,
)
.filter_map(move |r| match r {
Ok(g) => {
let mut new_tuple = from.clone();
put_pattern_value(&graph_name, g, &mut new_tuple)?;
Some(Ok(new_tuple))
}
Err(error) => Some(Err(error)),
}),
)
}
(Some(input_subject), None, None) => {
let object = object.clone();
let graph_name = graph_name.clone();
Box::new(
path_eval
.eval_from_in_unknown_graph(&path, &input_subject)
.filter_map(move |r| match r {
Ok((o, g)) => {
let mut new_tuple = from.clone();
put_pattern_value(&object, o, &mut new_tuple)?;
put_pattern_value(&graph_name, g, &mut new_tuple)?;
Some(Ok(new_tuple))
}
Err(error) => Some(Err(error)),
}),
)
}
(None, Some(input_object), None) => {
let subject = subject.clone();
let graph_name = graph_name.clone();
Box::new(
path_eval
.eval_to_in_unknown_graph(&path, &input_object)
.filter_map(move |r| match r {
Ok((s, g)) => {
let mut new_tuple = from.clone();
put_pattern_value(&subject, s, &mut new_tuple)?;
put_pattern_value(&graph_name, g, &mut new_tuple)?;
Some(Ok(new_tuple))
}
Err(error) => Some(Err(error)),
}),
)
}
(None, None, None) => {
let subject = subject.clone();
let object = object.clone();
let graph_name = graph_name.clone();
Box::new(path_eval.eval_open_in_unknown_graph(&path).filter_map(
move |r| match r {
Ok((s, o, g)) => {
let mut new_tuple = from.clone();
put_pattern_value(&subject, s, &mut new_tuple)?;
put_pattern_value(&object, o, &mut new_tuple)?;
put_pattern_value(&graph_name, g, &mut new_tuple)?;
Some(Ok(new_tuple))
}
Err(error) => Some(Err(error)),
},
))
}
}
})
}
GraphPattern::Join {
left,
right,
algorithm,
} => {
let (left, left_stats) = self.graph_pattern_evaluator(left, encoded_variables);
stat_children.push(left_stats);
let (right, right_stats) = self.graph_pattern_evaluator(right, encoded_variables);
stat_children.push(right_stats);
match algorithm {
JoinAlgorithm::HashBuildLeftProbeRight { keys } => {
let build = left;
let probe = right;
if keys.is_empty() {
Rc::new(move |from| {
let mut errors = Vec::default();
let built_values = build(from.clone())
.filter_map(|result| match result {
Ok(result) => Some(result),
Err(error) => {
errors.push(Err(error));
None
}
})
.collect::<Vec<_>>();
if built_values.is_empty() && errors.is_empty() {
return Box::new(empty());
}
let mut probe_iter = probe(from).peekable();
if probe_iter.peek().is_none() {
return Box::new(empty());
}
Box::new(CartesianProductJoinIterator {
probe_iter,
built: built_values,
buffered_results: errors,
})
})
} else {
let keys = keys
.iter()
.map(|v| encode_variable(encoded_variables, v))
.collect::<Vec<_>>();
Rc::new(move |from| {
let mut errors = Vec::default();
let mut built_values = EncodedTupleSet::new(keys.clone());
built_values.extend(build(from.clone()).filter_map(|result| {
match result {
Ok(result) => Some(result),
Err(error) => {
errors.push(Err(error));
None
}
}
}));
if built_values.is_empty() && errors.is_empty() {
return Box::new(empty());
}
let mut probe_iter = probe(from).peekable();
if probe_iter.peek().is_none() {
return Box::new(empty());
}
Box::new(HashJoinIterator {
probe_iter,
built: built_values,
buffered_results: errors,
})
})
}
}
}
}
GraphPattern::Lateral { left, right } => {
let (left, left_stats) = self.graph_pattern_evaluator(left, encoded_variables);
stat_children.push(left_stats);
if let GraphPattern::LeftJoin {
left: nested_left,
right: nested_right,
expression,
..
} = right.as_ref()
{
if nested_left.is_empty_singleton() {
let right =
GraphPattern::filter(nested_right.as_ref().clone(), expression.clone());
let (right, right_stats) =
self.graph_pattern_evaluator(&right, encoded_variables);
stat_children.push(right_stats);
return Rc::new(move |from| {
Box::new(ForLoopLeftJoinIterator {
right_evaluator: Rc::clone(&right),
left_iter: left(from),
current_right: Box::new(empty()),
})
});
}
}
let (right, right_stats) = self.graph_pattern_evaluator(right, encoded_variables);
stat_children.push(right_stats);
Rc::new(move |from| {
let right = Rc::clone(&right);
Box::new(left(from).flat_map(move |t| match t {
Ok(t) => right(t),
Err(e) => Box::new(once(Err(e))),
}))
})
}
GraphPattern::Minus {
left,
right,
algorithm,
} => {
let (left, left_stats) = self.graph_pattern_evaluator(left, encoded_variables);
stat_children.push(left_stats);
let (right, right_stats) = self.graph_pattern_evaluator(right, encoded_variables);
stat_children.push(right_stats);
match algorithm {
MinusAlgorithm::HashBuildRightProbeLeft { keys } => {
if keys.is_empty() {
Rc::new(move |from| {
let right: Vec<_> =
right(from.clone()).filter_map(Result::ok).collect();
if right.is_empty() {
return left(from);
}
Box::new(left(from).filter(move |left_tuple| {
if let Ok(left_tuple) = left_tuple {
!right.iter().any(|right_tuple| {
are_compatible_and_not_disjointed(
left_tuple,
right_tuple,
)
})
} else {
true
}
}))
})
} else {
let keys = keys
.iter()
.map(|v| encode_variable(encoded_variables, v))
.collect::<Vec<_>>();
Rc::new(move |from| {
let mut right_values = EncodedTupleSet::new(keys.clone());
right_values.extend(right(from.clone()).filter_map(Result::ok));
if right_values.is_empty() {
return left(from);
}
Box::new(left(from).filter(move |left_tuple| {
if let Ok(left_tuple) = left_tuple {
!right_values.get(left_tuple).iter().any(|right_tuple| {
are_compatible_and_not_disjointed(
left_tuple,
right_tuple,
)
})
} else {
true
}
}))
})
}
}
}
}
GraphPattern::LeftJoin {
left,
right,
expression,
algorithm,
} => {
let (left, left_stats) = self.graph_pattern_evaluator(left, encoded_variables);
stat_children.push(left_stats);
let (right, right_stats) = self.graph_pattern_evaluator(right, encoded_variables);
stat_children.push(right_stats);
let expression =
self.expression_evaluator(expression, encoded_variables, stat_children);
match algorithm {
LeftJoinAlgorithm::HashBuildRightProbeLeft { keys } => {
let keys = keys
.iter()
.map(|v| encode_variable(encoded_variables, v))
.collect::<Vec<_>>();
Rc::new(move |from| {
let mut errors = Vec::default();
let mut right_values = EncodedTupleSet::new(keys.clone());
right_values.extend(right(from.clone()).filter_map(
|result| match result {
Ok(result) => Some(result),
Err(error) => {
errors.push(Err(error));
None
}
},
));
if right_values.is_empty() && errors.is_empty() {
return left(from);
}
Box::new(HashLeftJoinIterator {
left_iter: left(from),
right: right_values,
buffered_results: errors,
expression: Rc::clone(&expression),
})
})
}
}
}
GraphPattern::Filter { inner, expression } => {
let (child, child_stats) = self.graph_pattern_evaluator(inner, encoded_variables);
stat_children.push(child_stats);
let expression =
self.expression_evaluator(expression, encoded_variables, stat_children);
Rc::new(move |from| {
let expression = Rc::clone(&expression);
Box::new(child(from).filter(move |tuple| {
match tuple {
Ok(tuple) => expression(tuple)
.and_then(|term| to_bool(&term))
.unwrap_or(false),
Err(_) => true,
}
}))
})
}
GraphPattern::Union { inner } => {
let children = inner
.iter()
.map(|child| {
let (child, child_stats) =
self.graph_pattern_evaluator(child, encoded_variables);
stat_children.push(child_stats);
child
})
.collect::<Vec<_>>();
Rc::new(move |from| {
Box::new(UnionIterator {
plans: children.clone(),
input: from,
current_iterator: Box::new(empty()),
current_plan: 0,
})
})
}
GraphPattern::Extend {
inner,
variable,
expression,
} => {
let (child, child_stats) = self.graph_pattern_evaluator(inner, encoded_variables);
stat_children.push(child_stats);
let position = encode_variable(encoded_variables, variable);
let expression =
self.expression_evaluator(expression, encoded_variables, stat_children);
Rc::new(move |from| {
let expression = Rc::clone(&expression);
Box::new(child(from).map(move |tuple| {
let mut tuple = tuple?;
if let Some(value) = expression(&tuple) {
tuple.set(position, value);
}
Ok(tuple)
}))
})
}
GraphPattern::OrderBy { inner, expression } => {
let (child, child_stats) = self.graph_pattern_evaluator(inner, encoded_variables);
stat_children.push(child_stats);
let by = expression
.iter()
.map(|comp| match comp {
OrderExpression::Asc(expression) => ComparatorFunction::Asc(
self.expression_evaluator(expression, encoded_variables, stat_children),
),
OrderExpression::Desc(expression) => ComparatorFunction::Desc(
self.expression_evaluator(expression, encoded_variables, stat_children),
),
})
.collect::<Vec<_>>();
let dataset = Rc::clone(&self.dataset);
Rc::new(move |from| {
let mut errors = Vec::default();
let mut values = child(from)
.filter_map(|result| match result {
Ok(result) => Some(result),
Err(error) => {
errors.push(Err(error));
None
}
})
.collect::<Vec<_>>();
values.sort_unstable_by(|a, b| {
for comp in &by {
match comp {
ComparatorFunction::Asc(expression) => {
match cmp_terms(
&dataset,
expression(a).as_ref(),
expression(b).as_ref(),
) {
Ordering::Greater => return Ordering::Greater,
Ordering::Less => return Ordering::Less,
Ordering::Equal => (),
}
}
ComparatorFunction::Desc(expression) => {
match cmp_terms(
&dataset,
expression(a).as_ref(),
expression(b).as_ref(),
) {
Ordering::Greater => return Ordering::Less,
Ordering::Less => return Ordering::Greater,
Ordering::Equal => (),
}
}
}
}
Ordering::Equal
});
Box::new(errors.into_iter().chain(values.into_iter().map(Ok)))
})
}
GraphPattern::Distinct { inner } => {
let (child, child_stats) = self.graph_pattern_evaluator(inner, encoded_variables);
stat_children.push(child_stats);
Rc::new(move |from| Box::new(hash_deduplicate(child(from))))
}
GraphPattern::Reduced { inner } => {
let (child, child_stats) = self.graph_pattern_evaluator(inner, encoded_variables);
stat_children.push(child_stats);
Rc::new(move |from| {
Box::new(ConsecutiveDeduplication {
inner: child(from),
current: None,
})
})
}
GraphPattern::Slice {
inner,
start,
length,
} => {
let (mut child, child_stats) =
self.graph_pattern_evaluator(inner, encoded_variables);
stat_children.push(child_stats);
#[allow(clippy::shadow_same)]
let start = *start;
if start > 0 {
child = Rc::new(move |from| Box::new(child(from).skip(start)));
}
if let Some(length) = *length {
child = Rc::new(move |from| Box::new(child(from).take(length)));
}
child
}
GraphPattern::Project { inner, variables } => {
let mut inner_encoded_variables = variables.clone();
let (child, child_stats) =
self.graph_pattern_evaluator(inner, &mut inner_encoded_variables);
stat_children.push(child_stats);
let mapping = variables
.iter()
.enumerate()
.map(|(new_variable, variable)| {
(new_variable, encode_variable(encoded_variables, variable))
})
.collect::<Rc<[(usize, usize)]>>();
Rc::new(move |from| {
let mapping = Rc::clone(&mapping);
let mut input_tuple = EncodedTuple::with_capacity(mapping.len());
for (input_key, output_key) in &*mapping {
if let Some(value) = from.get(*output_key) {
input_tuple.set(*input_key, value.clone());
}
}
Box::new(child(input_tuple).filter_map(move |tuple| {
match tuple {
Ok(tuple) => {
let mut output_tuple = from.clone();
for (input_key, output_key) in &*mapping {
if let Some(value) = tuple.get(*input_key) {
if let Some(existing_value) = output_tuple.get(*output_key)
{
if existing_value != value {
return None; }
} else {
output_tuple.set(*output_key, value.clone());
}
}
}
Some(Ok(output_tuple))
}
Err(e) => Some(Err(e)),
}
}))
})
}
GraphPattern::Group {
inner,
aggregates,
variables,
} => {
let (child, child_stats) = self.graph_pattern_evaluator(inner, encoded_variables);
stat_children.push(child_stats);
let key_variables = variables
.iter()
.map(|k| encode_variable(encoded_variables, k))
.collect::<Rc<[_]>>();
let aggregate_input_expressions = aggregates
.iter()
.map(|(_, expression)| match expression {
AggregateExpression::CountSolutions { .. } => None,
AggregateExpression::FunctionCall { expr, .. } => {
Some(self.expression_evaluator(expr, encoded_variables, stat_children))
}
})
.collect::<Vec<_>>();
let accumulator_builders = aggregates
.iter()
.map(|(_, aggregate)| Self::accumulator_builder(&self.dataset, aggregate))
.collect::<Vec<_>>();
let accumulator_variables = aggregates
.iter()
.map(|(variable, _)| encode_variable(encoded_variables, variable))
.collect::<Vec<_>>();
Rc::new(move |from| {
let tuple_size = from.capacity();
let key_variables = Rc::clone(&key_variables);
let mut errors = Vec::default();
let mut accumulators_for_group =
FxHashMap::<Vec<Option<EncodedTerm>>, Vec<Box<dyn Accumulator>>>::default();
if key_variables.is_empty() {
accumulators_for_group.insert(
Vec::new(),
accumulator_builders.iter().map(|c| c()).collect::<Vec<_>>(),
);
}
child(from)
.filter_map(|result| match result {
Ok(result) => Some(result),
Err(error) => {
errors.push(error);
None
}
})
.for_each(|tuple| {
let key = key_variables
.iter()
.map(|v| tuple.get(*v).cloned())
.collect();
let key_accumulators =
accumulators_for_group.entry(key).or_insert_with(|| {
accumulator_builders.iter().map(|c| c()).collect::<Vec<_>>()
});
for (accumulator, input_expression) in key_accumulators
.iter_mut()
.zip(&aggregate_input_expressions)
{
accumulator.add(
input_expression
.as_ref()
.and_then(|parameter| parameter(&tuple)),
);
}
});
let accumulator_variables = accumulator_variables.clone();
Box::new(
errors
.into_iter()
.map(Err)
.chain(accumulators_for_group.into_iter().map(
move |(key, accumulators)| {
let mut result = EncodedTuple::with_capacity(tuple_size);
for (variable, value) in key_variables.iter().zip(key) {
if let Some(value) = value {
result.set(*variable, value);
}
}
for (accumulator, variable) in
accumulators.into_iter().zip(&accumulator_variables)
{
if let Some(value) = accumulator.state() {
result.set(*variable, value);
}
}
Ok(result)
},
)),
)
})
}
}
}
fn evaluate_service(
&self,
service_name: &TupleSelector,
graph_pattern: &spargebra::algebra::GraphPattern,
variables: Rc<[Variable]>,
from: &EncodedTuple,
) -> Result<EncodedTuplesIterator, EvaluationError> {
let service_name = service_name
.get_pattern_value(from)
.ok_or(EvaluationError::UnboundService)?;
if let QueryResults::Solutions(iter) = self.service_handler.handle(
self.dataset.decode_named_node(&service_name)?,
Query {
inner: spargebra::Query::Select {
dataset: None,
pattern: graph_pattern.clone(),
#[allow(clippy::useless_asref)]
base_iri: self.base_iri.as_ref().map(|iri| iri.as_ref().clone()),
},
dataset: QueryDataset::new(),
parsing_duration: None,
},
)? {
Ok(encode_bindings(Rc::clone(&self.dataset), variables, iter))
} else {
Err(EvaluationError::ServiceDoesNotReturnSolutions)
}
}
#[allow(clippy::redundant_closure)] fn accumulator_builder(
dataset: &Rc<DatasetView>,
expression: &AggregateExpression,
) -> Box<dyn Fn() -> Box<dyn Accumulator>> {
let mut accumulator: Box<dyn Fn() -> Box<dyn Accumulator>> = match expression {
AggregateExpression::CountSolutions { .. } => {
Box::new(|| Box::<CountAccumulator>::default())
}
AggregateExpression::FunctionCall { name, .. } => match name {
AggregateFunction::Count => Box::new(|| Box::<CountAccumulator>::default()),
AggregateFunction::Sum => Box::new(|| Box::<SumAccumulator>::default()),
AggregateFunction::Min => {
let dataset = Rc::clone(dataset);
Box::new(move || Box::new(MinAccumulator::new(Rc::clone(&dataset))))
}
AggregateFunction::Max => {
let dataset = Rc::clone(dataset);
Box::new(move || Box::new(MaxAccumulator::new(Rc::clone(&dataset))))
}
AggregateFunction::Avg => Box::new(|| Box::<AvgAccumulator>::default()),
AggregateFunction::Sample => Box::new(|| Box::<SampleAccumulator>::default()),
AggregateFunction::GroupConcat { separator } => {
let dataset = Rc::clone(dataset);
let separator = Rc::from(separator.as_deref().unwrap_or(" "));
Box::new(move || {
Box::new(GroupConcatAccumulator::new(
Rc::clone(&dataset),
Rc::clone(&separator),
))
})
}
AggregateFunction::Custom(_) => Box::new(|| Box::new(FailingAccumulator)),
},
};
if matches!(
expression,
AggregateExpression::CountSolutions { distinct: true }
| AggregateExpression::FunctionCall { distinct: true, .. }
) {
accumulator = Box::new(move || Box::new(Deduplicate::new(accumulator())));
}
accumulator
}
fn expression_evaluator(
&self,
expression: &Expression,
encoded_variables: &mut Vec<Variable>,
stat_children: &mut Vec<Rc<EvalNodeWithStats>>,
) -> Rc<dyn Fn(&EncodedTuple) -> Option<EncodedTerm>> {
match expression {
Expression::NamedNode(t) => {
let t = self.encode_term(t);
Rc::new(move |_| Some(t.clone()))
}
Expression::Literal(t) => {
let t = self.encode_term(t);
Rc::new(move |_| Some(t.clone()))
}
Expression::Variable(v) => {
let v = encode_variable(encoded_variables, v);
Rc::new(move |tuple| tuple.get(v).cloned())
}
Expression::Bound(v) => {
let v = encode_variable(encoded_variables, v);
Rc::new(move |tuple| Some(tuple.contains(v).into()))
}
Expression::Exists(plan) => {
let (eval, stats) = self.graph_pattern_evaluator(plan, encoded_variables);
stat_children.push(stats);
Rc::new(move |tuple| Some(eval(tuple.clone()).next().is_some().into()))
}
Expression::Or(inner) => {
let children = inner
.iter()
.map(|i| self.expression_evaluator(i, encoded_variables, stat_children))
.collect::<Rc<[_]>>();
Rc::new(move |tuple| {
let mut error = false;
for child in &*children {
match child(tuple).and_then(|v| to_bool(&v)) {
Some(true) => return Some(true.into()),
Some(false) => continue,
None => error = true,
}
}
if error {
None
} else {
Some(false.into())
}
})
}
Expression::And(inner) => {
let children = inner
.iter()
.map(|i| self.expression_evaluator(i, encoded_variables, stat_children))
.collect::<Rc<[_]>>();
Rc::new(move |tuple| {
let mut error = false;
for child in &*children {
match child(tuple).and_then(|v| to_bool(&v)) {
Some(true) => continue,
Some(false) => return Some(false.into()),
None => error = true,
}
}
if error {
None
} else {
Some(true.into())
}
})
}
Expression::Equal(a, b) => {
let a = self.expression_evaluator(a, encoded_variables, stat_children);
let b = self.expression_evaluator(b, encoded_variables, stat_children);
Rc::new(move |tuple| equals(&a(tuple)?, &b(tuple)?).map(Into::into))
}
Expression::SameTerm(a, b) => {
let a = self.expression_evaluator(a, encoded_variables, stat_children);
let b = self.expression_evaluator(b, encoded_variables, stat_children);
Rc::new(move |tuple| Some((a(tuple)? == b(tuple)?).into()))
}
Expression::Greater(a, b) => {
let a = self.expression_evaluator(a, encoded_variables, stat_children);
let b = self.expression_evaluator(b, encoded_variables, stat_children);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| {
Some(
(partial_cmp(&dataset, &a(tuple)?, &b(tuple)?)? == Ordering::Greater)
.into(),
)
})
}
Expression::GreaterOrEqual(a, b) => {
let a = self.expression_evaluator(a, encoded_variables, stat_children);
let b = self.expression_evaluator(b, encoded_variables, stat_children);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| {
Some(
match partial_cmp(&dataset, &a(tuple)?, &b(tuple)?)? {
Ordering::Greater | Ordering::Equal => true,
Ordering::Less => false,
}
.into(),
)
})
}
Expression::Less(a, b) => {
let a = self.expression_evaluator(a, encoded_variables, stat_children);
let b = self.expression_evaluator(b, encoded_variables, stat_children);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| {
Some((partial_cmp(&dataset, &a(tuple)?, &b(tuple)?)? == Ordering::Less).into())
})
}
Expression::LessOrEqual(a, b) => {
let a = self.expression_evaluator(a, encoded_variables, stat_children);
let b = self.expression_evaluator(b, encoded_variables, stat_children);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| {
Some(
match partial_cmp(&dataset, &a(tuple)?, &b(tuple)?)? {
Ordering::Less | Ordering::Equal => true,
Ordering::Greater => false,
}
.into(),
)
})
}
Expression::Add(a, b) => {
let a = self.expression_evaluator(a, encoded_variables, stat_children);
let b = self.expression_evaluator(b, encoded_variables, stat_children);
Rc::new(
move |tuple| match NumericBinaryOperands::new(a(tuple)?, b(tuple)?)? {
NumericBinaryOperands::Float(v1, v2) => Some((v1 + v2).into()),
NumericBinaryOperands::Double(v1, v2) => Some((v1 + v2).into()),
NumericBinaryOperands::Integer(v1, v2) => Some(v1.checked_add(v2)?.into()),
NumericBinaryOperands::Decimal(v1, v2) => Some(v1.checked_add(v2)?.into()),
NumericBinaryOperands::Duration(v1, v2) => Some(v1.checked_add(v2)?.into()),
NumericBinaryOperands::YearMonthDuration(v1, v2) => {
Some(v1.checked_add(v2)?.into())
}
NumericBinaryOperands::DayTimeDuration(v1, v2) => {
Some(v1.checked_add(v2)?.into())
}
NumericBinaryOperands::DateTimeDuration(v1, v2) => {
Some(v1.checked_add_duration(v2)?.into())
}
NumericBinaryOperands::DateTimeYearMonthDuration(v1, v2) => {
Some(v1.checked_add_year_month_duration(v2)?.into())
}
NumericBinaryOperands::DateTimeDayTimeDuration(v1, v2) => {
Some(v1.checked_add_day_time_duration(v2)?.into())
}
NumericBinaryOperands::DateDuration(v1, v2) => {
Some(v1.checked_add_duration(v2)?.into())
}
NumericBinaryOperands::DateYearMonthDuration(v1, v2) => {
Some(v1.checked_add_year_month_duration(v2)?.into())
}
NumericBinaryOperands::DateDayTimeDuration(v1, v2) => {
Some(v1.checked_add_day_time_duration(v2)?.into())
}
NumericBinaryOperands::TimeDuration(v1, v2) => {
Some(v1.checked_add_duration(v2)?.into())
}
NumericBinaryOperands::TimeDayTimeDuration(v1, v2) => {
Some(v1.checked_add_day_time_duration(v2)?.into())
}
NumericBinaryOperands::DateTime(_, _)
| NumericBinaryOperands::Time(_, _)
| NumericBinaryOperands::Date(_, _) => None,
},
)
}
Expression::Subtract(a, b) => {
let a = self.expression_evaluator(a, encoded_variables, stat_children);
let b = self.expression_evaluator(b, encoded_variables, stat_children);
Rc::new(move |tuple| {
Some(match NumericBinaryOperands::new(a(tuple)?, b(tuple)?)? {
NumericBinaryOperands::Float(v1, v2) => (v1 - v2).into(),
NumericBinaryOperands::Double(v1, v2) => (v1 - v2).into(),
NumericBinaryOperands::Integer(v1, v2) => v1.checked_sub(v2)?.into(),
NumericBinaryOperands::Decimal(v1, v2) => v1.checked_sub(v2)?.into(),
NumericBinaryOperands::DateTime(v1, v2) => v1.checked_sub(v2)?.into(),
NumericBinaryOperands::Date(v1, v2) => v1.checked_sub(v2)?.into(),
NumericBinaryOperands::Time(v1, v2) => v1.checked_sub(v2)?.into(),
NumericBinaryOperands::Duration(v1, v2) => v1.checked_sub(v2)?.into(),
NumericBinaryOperands::YearMonthDuration(v1, v2) => {
v1.checked_sub(v2)?.into()
}
NumericBinaryOperands::DayTimeDuration(v1, v2) => {
v1.checked_sub(v2)?.into()
}
NumericBinaryOperands::DateTimeDuration(v1, v2) => {
v1.checked_sub_duration(v2)?.into()
}
NumericBinaryOperands::DateTimeYearMonthDuration(v1, v2) => {
v1.checked_sub_year_month_duration(v2)?.into()
}
NumericBinaryOperands::DateTimeDayTimeDuration(v1, v2) => {
v1.checked_sub_day_time_duration(v2)?.into()
}
NumericBinaryOperands::DateDuration(v1, v2) => {
v1.checked_sub_duration(v2)?.into()
}
NumericBinaryOperands::DateYearMonthDuration(v1, v2) => {
v1.checked_sub_year_month_duration(v2)?.into()
}
NumericBinaryOperands::DateDayTimeDuration(v1, v2) => {
v1.checked_sub_day_time_duration(v2)?.into()
}
NumericBinaryOperands::TimeDuration(v1, v2) => {
v1.checked_sub_duration(v2)?.into()
}
NumericBinaryOperands::TimeDayTimeDuration(v1, v2) => {
v1.checked_sub_day_time_duration(v2)?.into()
}
})
})
}
Expression::Multiply(a, b) => {
let a = self.expression_evaluator(a, encoded_variables, stat_children);
let b = self.expression_evaluator(b, encoded_variables, stat_children);
Rc::new(
move |tuple| match NumericBinaryOperands::new(a(tuple)?, b(tuple)?)? {
NumericBinaryOperands::Float(v1, v2) => Some((v1 * v2).into()),
NumericBinaryOperands::Double(v1, v2) => Some((v1 * v2).into()),
NumericBinaryOperands::Integer(v1, v2) => Some(v1.checked_mul(v2)?.into()),
NumericBinaryOperands::Decimal(v1, v2) => Some(v1.checked_mul(v2)?.into()),
_ => None,
},
)
}
Expression::Divide(a, b) => {
let a = self.expression_evaluator(a, encoded_variables, stat_children);
let b = self.expression_evaluator(b, encoded_variables, stat_children);
Rc::new(
move |tuple| match NumericBinaryOperands::new(a(tuple)?, b(tuple)?)? {
NumericBinaryOperands::Float(v1, v2) => Some((v1 / v2).into()),
NumericBinaryOperands::Double(v1, v2) => Some((v1 / v2).into()),
NumericBinaryOperands::Integer(v1, v2) => {
Some(Decimal::from(v1).checked_div(v2)?.into())
}
NumericBinaryOperands::Decimal(v1, v2) => Some(v1.checked_div(v2)?.into()),
_ => None,
},
)
}
Expression::UnaryPlus(e) => {
let e = self.expression_evaluator(e, encoded_variables, stat_children);
Rc::new(move |tuple| match e(tuple)? {
EncodedTerm::FloatLiteral(value) => Some(value.into()),
EncodedTerm::DoubleLiteral(value) => Some(value.into()),
EncodedTerm::IntegerLiteral(value) => Some(value.into()),
EncodedTerm::DecimalLiteral(value) => Some(value.into()),
EncodedTerm::DurationLiteral(value) => Some(value.into()),
EncodedTerm::YearMonthDurationLiteral(value) => Some(value.into()),
EncodedTerm::DayTimeDurationLiteral(value) => Some(value.into()),
_ => None,
})
}
Expression::UnaryMinus(e) => {
let e = self.expression_evaluator(e, encoded_variables, stat_children);
Rc::new(move |tuple| match e(tuple)? {
EncodedTerm::FloatLiteral(value) => Some((-value).into()),
EncodedTerm::DoubleLiteral(value) => Some((-value).into()),
EncodedTerm::IntegerLiteral(value) => Some(value.checked_neg()?.into()),
EncodedTerm::DecimalLiteral(value) => Some(value.checked_neg()?.into()),
EncodedTerm::DurationLiteral(value) => Some(value.checked_neg()?.into()),
EncodedTerm::YearMonthDurationLiteral(value) => {
Some(value.checked_neg()?.into())
}
EncodedTerm::DayTimeDurationLiteral(value) => Some(value.checked_neg()?.into()),
_ => None,
})
}
Expression::Not(e) => {
let e = self.expression_evaluator(e, encoded_variables, stat_children);
Rc::new(move |tuple| to_bool(&e(tuple)?).map(|v| (!v).into()))
}
Expression::Coalesce(l) => {
let l: Vec<_> = l
.iter()
.map(|e| self.expression_evaluator(e, encoded_variables, stat_children))
.collect();
Rc::new(move |tuple| {
for e in &l {
if let Some(result) = e(tuple) {
return Some(result);
}
}
None
})
}
Expression::If(a, b, c) => {
let a = self.expression_evaluator(a, encoded_variables, stat_children);
let b = self.expression_evaluator(b, encoded_variables, stat_children);
let c = self.expression_evaluator(c, encoded_variables, stat_children);
Rc::new(move |tuple| {
if to_bool(&a(tuple)?)? {
b(tuple)
} else {
c(tuple)
}
})
}
Expression::FunctionCall(function, parameters) => {
match function {
Function::Str => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| {
Some(build_string_literal_from_id(to_string_id(
&dataset,
&e(tuple)?,
)?))
})
}
Function::Lang => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| match e(tuple)? {
EncodedTerm::SmallSmallLangStringLiteral { language, .. }
| EncodedTerm::BigSmallLangStringLiteral { language, .. } => {
Some(build_string_literal_from_id(language.into()))
}
EncodedTerm::SmallBigLangStringLiteral { language_id, .. }
| EncodedTerm::BigBigLangStringLiteral { language_id, .. } => {
Some(build_string_literal_from_id(language_id.into()))
}
e if e.is_literal() => Some(build_string_literal(&dataset, "")),
_ => None,
})
}
Function::LangMatches => {
let language_tag = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let language_range = self.expression_evaluator(
¶meters[1],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| {
let mut language_tag =
to_simple_string(&dataset, &language_tag(tuple)?)?;
language_tag.make_ascii_lowercase();
let mut language_range =
to_simple_string(&dataset, &language_range(tuple)?)?;
language_range.make_ascii_lowercase();
Some(
if &*language_range == "*" {
!language_tag.is_empty()
} else {
!ZipLongest::new(
language_range.split('-'),
language_tag.split('-'),
)
.any(|parts| match parts {
(Some(range_subtag), Some(language_subtag)) => {
range_subtag != language_subtag
}
(Some(_), None) => true,
(None, _) => false,
})
}
.into(),
)
})
}
Function::Datatype => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| datatype(&dataset, &e(tuple)?))
}
Function::Iri => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
let base_iri = self.base_iri.clone();
Rc::new(move |tuple| {
let e = e(tuple)?;
if e.is_named_node() {
Some(e)
} else {
let iri = to_simple_string(&dataset, &e)?;
Some(build_named_node(
&dataset,
&if let Some(base_iri) = &base_iri {
base_iri.resolve(&iri)
} else {
Iri::parse(iri)
}
.ok()?
.into_inner(),
))
}
})
}
Function::BNode => match parameters.first() {
Some(id) => {
let id =
self.expression_evaluator(id, encoded_variables, stat_children);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| {
Some(
dataset.encode_term(
BlankNode::new(to_simple_string(&dataset, &id(tuple)?)?)
.ok()?
.as_ref(),
),
)
})
}
None => Rc::new(|_| {
Some(EncodedTerm::NumericalBlankNode {
id: random::<[u8; 16]>(),
})
}),
},
Function::Rand => Rc::new(|_| Some(random::<f64>().into())),
Function::Abs => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
Rc::new(move |tuple| match e(tuple)? {
EncodedTerm::IntegerLiteral(value) => Some(value.checked_abs()?.into()),
EncodedTerm::DecimalLiteral(value) => Some(value.checked_abs()?.into()),
EncodedTerm::FloatLiteral(value) => Some(value.abs().into()),
EncodedTerm::DoubleLiteral(value) => Some(value.abs().into()),
_ => None,
})
}
Function::Ceil => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
Rc::new(move |tuple| match e(tuple)? {
EncodedTerm::IntegerLiteral(value) => Some(value.into()),
EncodedTerm::DecimalLiteral(value) => {
Some(value.checked_ceil()?.into())
}
EncodedTerm::FloatLiteral(value) => Some(value.ceil().into()),
EncodedTerm::DoubleLiteral(value) => Some(value.ceil().into()),
_ => None,
})
}
Function::Floor => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
Rc::new(move |tuple| match e(tuple)? {
EncodedTerm::IntegerLiteral(value) => Some(value.into()),
EncodedTerm::DecimalLiteral(value) => {
Some(value.checked_floor()?.into())
}
EncodedTerm::FloatLiteral(value) => Some(value.floor().into()),
EncodedTerm::DoubleLiteral(value) => Some(value.floor().into()),
_ => None,
})
}
Function::Round => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
Rc::new(move |tuple| match e(tuple)? {
EncodedTerm::IntegerLiteral(value) => Some(value.into()),
EncodedTerm::DecimalLiteral(value) => {
Some(value.checked_round()?.into())
}
EncodedTerm::FloatLiteral(value) => Some(value.round().into()),
EncodedTerm::DoubleLiteral(value) => Some(value.round().into()),
_ => None,
})
}
Function::Concat => {
let l: Vec<_> = parameters
.iter()
.map(|e| self.expression_evaluator(e, encoded_variables, stat_children))
.collect();
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| {
let mut result = String::default();
let mut language = None;
for e in &l {
let (value, e_language) =
to_string_and_language(&dataset, &e(tuple)?)?;
if let Some(lang) = language {
if lang != e_language {
language = Some(None)
}
} else {
language = Some(e_language)
}
result += &value
}
Some(build_plain_literal(
&dataset,
&result,
language.and_then(|v| v),
))
})
}
Function::SubStr => {
let source = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let starting_loc = self.expression_evaluator(
¶meters[1],
encoded_variables,
stat_children,
);
let length = parameters.get(2).map(|l| {
self.expression_evaluator(l, encoded_variables, stat_children)
});
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| {
let (source, language) =
to_string_and_language(&dataset, &source(tuple)?)?;
let starting_location: usize =
if let EncodedTerm::IntegerLiteral(v) = starting_loc(tuple)? {
i64::from(v).try_into().ok()?
} else {
return None;
};
let length: Option<usize> = if let Some(length) = &length {
if let EncodedTerm::IntegerLiteral(v) = length(tuple)? {
Some(i64::from(v).try_into().ok()?)
} else {
return None;
}
} else {
None
};
let mut start_iter = source
.char_indices()
.skip(starting_location.checked_sub(1)?)
.peekable();
let result =
if let Some((start_position, _)) = start_iter.peek().copied() {
if let Some(length) = length {
let mut end_iter = start_iter.skip(length).peekable();
if let Some((end_position, _)) = end_iter.peek() {
&source[start_position..*end_position]
} else {
&source[start_position..]
}
} else {
&source[start_position..]
}
} else {
""
};
Some(build_plain_literal(&dataset, result, language))
})
}
Function::StrLen => {
let arg = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| {
Some(
i64::try_from(to_string(&dataset, &arg(tuple)?)?.chars().count())
.ok()?
.into(),
)
})
}
Function::Replace => {
let arg = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let replacement = self.expression_evaluator(
¶meters[2],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
if let Some(regex) =
compile_static_pattern_if_exists(¶meters[1], parameters.get(3))
{
Rc::new(move |tuple| {
let (text, language) =
to_string_and_language(&dataset, &arg(tuple)?)?;
let replacement = to_simple_string(&dataset, &replacement(tuple)?)?;
Some(build_plain_literal(
&dataset,
®ex.replace_all(&text, replacement.as_str()),
language,
))
})
} else {
let pattern = self.expression_evaluator(
¶meters[1],
encoded_variables,
stat_children,
);
let flags = parameters.get(3).map(|flags| {
self.expression_evaluator(flags, encoded_variables, stat_children)
});
Rc::new(move |tuple| {
let pattern = to_simple_string(&dataset, &pattern(tuple)?)?;
let options = if let Some(flags) = &flags {
Some(to_simple_string(&dataset, &flags(tuple)?)?)
} else {
None
};
let regex = compile_pattern(&pattern, options.as_deref())?;
let (text, language) =
to_string_and_language(&dataset, &arg(tuple)?)?;
let replacement = to_simple_string(&dataset, &replacement(tuple)?)?;
Some(build_plain_literal(
&dataset,
®ex.replace_all(&text, replacement.as_str()),
language,
))
})
}
}
Function::UCase => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| {
let (value, language) = to_string_and_language(&dataset, &e(tuple)?)?;
Some(build_plain_literal(
&dataset,
&value.to_uppercase(),
language,
))
})
}
Function::LCase => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| {
let (value, language) = to_string_and_language(&dataset, &e(tuple)?)?;
Some(build_plain_literal(
&dataset,
&value.to_lowercase(),
language,
))
})
}
Function::StrStarts => {
let arg1 = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let arg2 = self.expression_evaluator(
¶meters[1],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| {
let (arg1, arg2, _) = to_argument_compatible_strings(
&dataset,
&arg1(tuple)?,
&arg2(tuple)?,
)?;
Some(arg1.starts_with(arg2.as_str()).into())
})
}
Function::EncodeForUri => {
let ltrl = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| {
let ltlr = to_string(&dataset, <rl(tuple)?)?;
let mut result = Vec::with_capacity(ltlr.len());
for c in ltlr.bytes() {
match c {
b'A'..=b'Z'
| b'a'..=b'z'
| b'0'..=b'9'
| b'-'
| b'_'
| b'.'
| b'~' => result.push(c),
_ => {
result.push(b'%');
let high = c / 16;
let low = c % 16;
result.push(if high < 10 {
b'0' + high
} else {
b'A' + (high - 10)
});
result.push(if low < 10 {
b'0' + low
} else {
b'A' + (low - 10)
});
}
}
}
Some(build_string_literal(
&dataset,
str::from_utf8(&result).ok()?,
))
})
}
Function::StrEnds => {
let arg1 = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let arg2 = self.expression_evaluator(
¶meters[1],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| {
let (arg1, arg2, _) = to_argument_compatible_strings(
&dataset,
&arg1(tuple)?,
&arg2(tuple)?,
)?;
Some(arg1.ends_with(arg2.as_str()).into())
})
}
Function::Contains => {
let arg1 = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let arg2 = self.expression_evaluator(
¶meters[1],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| {
let (arg1, arg2, _) = to_argument_compatible_strings(
&dataset,
&arg1(tuple)?,
&arg2(tuple)?,
)?;
Some(arg1.contains(arg2.as_str()).into())
})
}
Function::StrBefore => {
let arg1 = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let arg2 = self.expression_evaluator(
¶meters[1],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| {
let (arg1, arg2, language) = to_argument_compatible_strings(
&dataset,
&arg1(tuple)?,
&arg2(tuple)?,
)?;
Some(if let Some(position) = arg1.find(arg2.as_str()) {
build_plain_literal(&dataset, &arg1[..position], language)
} else {
build_string_literal(&dataset, "")
})
})
}
Function::StrAfter => {
let arg1 = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let arg2 = self.expression_evaluator(
¶meters[1],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| {
let (arg1, arg2, language) = to_argument_compatible_strings(
&dataset,
&arg1(tuple)?,
&arg2(tuple)?,
)?;
Some(if let Some(position) = arg1.find(arg2.as_str()) {
build_plain_literal(
&dataset,
&arg1[position + arg2.len()..],
language,
)
} else {
build_string_literal(&dataset, "")
})
})
}
Function::Year => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
Rc::new(move |tuple| match e(tuple)? {
EncodedTerm::DateTimeLiteral(date_time) => {
Some(date_time.year().into())
}
EncodedTerm::DateLiteral(date) => Some(date.year().into()),
EncodedTerm::GYearMonthLiteral(year_month) => {
Some(year_month.year().into())
}
EncodedTerm::GYearLiteral(year) => Some(year.year().into()),
_ => None,
})
}
Function::Month => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
Rc::new(move |tuple| match e(tuple)? {
EncodedTerm::DateTimeLiteral(date_time) => {
Some(date_time.month().into())
}
EncodedTerm::DateLiteral(date) => Some(date.month().into()),
EncodedTerm::GYearMonthLiteral(year_month) => {
Some(year_month.month().into())
}
EncodedTerm::GMonthDayLiteral(month_day) => {
Some(month_day.month().into())
}
EncodedTerm::GMonthLiteral(month) => Some(month.month().into()),
_ => None,
})
}
Function::Day => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
Rc::new(move |tuple| match e(tuple)? {
EncodedTerm::DateTimeLiteral(date_time) => Some(date_time.day().into()),
EncodedTerm::DateLiteral(date) => Some(date.day().into()),
EncodedTerm::GMonthDayLiteral(month_day) => {
Some(month_day.day().into())
}
EncodedTerm::GDayLiteral(day) => Some(day.day().into()),
_ => None,
})
}
Function::Hours => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
Rc::new(move |tuple| match e(tuple)? {
EncodedTerm::DateTimeLiteral(date_time) => {
Some(date_time.hour().into())
}
EncodedTerm::TimeLiteral(time) => Some(time.hour().into()),
_ => None,
})
}
Function::Minutes => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
Rc::new(move |tuple| match e(tuple)? {
EncodedTerm::DateTimeLiteral(date_time) => {
Some(date_time.minute().into())
}
EncodedTerm::TimeLiteral(time) => Some(time.minute().into()),
_ => None,
})
}
Function::Seconds => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
Rc::new(move |tuple| match e(tuple)? {
EncodedTerm::DateTimeLiteral(date_time) => {
Some(date_time.second().into())
}
EncodedTerm::TimeLiteral(time) => Some(time.second().into()),
_ => None,
})
}
Function::Timezone => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
Rc::new(move |tuple| {
Some(
match e(tuple)? {
EncodedTerm::DateTimeLiteral(date_time) => date_time.timezone(),
EncodedTerm::TimeLiteral(time) => time.timezone(),
EncodedTerm::DateLiteral(date) => date.timezone(),
EncodedTerm::GYearMonthLiteral(year_month) => {
year_month.timezone()
}
EncodedTerm::GYearLiteral(year) => year.timezone(),
EncodedTerm::GMonthDayLiteral(month_day) => {
month_day.timezone()
}
EncodedTerm::GDayLiteral(day) => day.timezone(),
EncodedTerm::GMonthLiteral(month) => month.timezone(),
_ => None,
}?
.into(),
)
})
}
Function::Tz => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| {
let timezone_offset = match e(tuple)? {
EncodedTerm::DateTimeLiteral(date_time) => {
date_time.timezone_offset()
}
EncodedTerm::TimeLiteral(time) => time.timezone_offset(),
EncodedTerm::DateLiteral(date) => date.timezone_offset(),
EncodedTerm::GYearMonthLiteral(year_month) => {
year_month.timezone_offset()
}
EncodedTerm::GYearLiteral(year) => year.timezone_offset(),
EncodedTerm::GMonthDayLiteral(month_day) => {
month_day.timezone_offset()
}
EncodedTerm::GDayLiteral(day) => day.timezone_offset(),
EncodedTerm::GMonthLiteral(month) => month.timezone_offset(),
_ => return None,
};
Some(match timezone_offset {
Some(timezone_offset) => {
build_string_literal(&dataset, &timezone_offset.to_string())
}
None => build_string_literal(&dataset, ""),
})
})
}
Function::Adjust => {
let dt = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let tz = self.expression_evaluator(
¶meters[1],
encoded_variables,
stat_children,
);
Rc::new(move |tuple| {
let timezone_offset = Some(
match tz(tuple)? {
EncodedTerm::DayTimeDurationLiteral(tz) => {
TimezoneOffset::try_from(tz)
}
EncodedTerm::DurationLiteral(tz) => {
TimezoneOffset::try_from(tz)
}
_ => return None,
}
.ok()?,
);
Some(match dt(tuple)? {
EncodedTerm::DateTimeLiteral(date_time) => {
date_time.adjust(timezone_offset)?.into()
}
EncodedTerm::TimeLiteral(time) => {
time.adjust(timezone_offset)?.into()
}
EncodedTerm::DateLiteral(date) => {
date.adjust(timezone_offset)?.into()
}
EncodedTerm::GYearMonthLiteral(year_month) => {
year_month.adjust(timezone_offset)?.into()
}
EncodedTerm::GYearLiteral(year) => {
year.adjust(timezone_offset)?.into()
}
EncodedTerm::GMonthDayLiteral(month_day) => {
month_day.adjust(timezone_offset)?.into()
}
EncodedTerm::GDayLiteral(day) => {
day.adjust(timezone_offset)?.into()
}
EncodedTerm::GMonthLiteral(month) => {
month.adjust(timezone_offset)?.into()
}
_ => return None,
})
})
}
Function::Now => {
let now = self.now;
Rc::new(move |_| Some(now.into()))
}
Function::Uuid => {
let dataset = Rc::clone(&self.dataset);
Rc::new(move |_| {
let mut buffer = String::with_capacity(44);
buffer.push_str("urn:uuid:");
generate_uuid(&mut buffer);
Some(build_named_node(&dataset, &buffer))
})
}
Function::StrUuid => {
let dataset = Rc::clone(&self.dataset);
Rc::new(move |_| {
let mut buffer = String::with_capacity(36);
generate_uuid(&mut buffer);
Some(build_string_literal(&dataset, &buffer))
})
}
Function::Md5 => self.hash::<Md5>(parameters, encoded_variables, stat_children),
Function::Sha1 => {
self.hash::<Sha1>(parameters, encoded_variables, stat_children)
}
Function::Sha256 => {
self.hash::<Sha256>(parameters, encoded_variables, stat_children)
}
Function::Sha384 => {
self.hash::<Sha384>(parameters, encoded_variables, stat_children)
}
Function::Sha512 => {
self.hash::<Sha512>(parameters, encoded_variables, stat_children)
}
Function::StrLang => {
let lexical_form = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let lang_tag = self.expression_evaluator(
¶meters[1],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| {
Some(build_lang_string_literal_from_id(
to_simple_string_id(&lexical_form(tuple)?)?,
build_language_id(&dataset, &lang_tag(tuple)?)?,
))
})
}
Function::StrDt => {
let lexical_form = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let datatype = self.expression_evaluator(
¶meters[1],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| {
let value = to_simple_string(&dataset, &lexical_form(tuple)?)?;
let datatype =
if let EncodedTerm::NamedNode { iri_id } = datatype(tuple)? {
dataset.get_str(&iri_id).ok()?
} else {
None
}?;
Some(dataset.encode_term(LiteralRef::new_typed_literal(
&value,
NamedNodeRef::new_unchecked(&datatype),
)))
})
}
Function::IsIri => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
Rc::new(move |tuple| Some(e(tuple)?.is_named_node().into()))
}
Function::IsBlank => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
Rc::new(move |tuple| Some(e(tuple)?.is_blank_node().into()))
}
Function::IsLiteral => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
Rc::new(move |tuple| Some(e(tuple)?.is_literal().into()))
}
Function::IsNumeric => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
Rc::new(move |tuple| {
Some(
matches!(
e(tuple)?,
EncodedTerm::FloatLiteral(_)
| EncodedTerm::DoubleLiteral(_)
| EncodedTerm::IntegerLiteral(_)
| EncodedTerm::DecimalLiteral(_)
)
.into(),
)
})
}
Function::Regex => {
let text = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
if let Some(regex) =
compile_static_pattern_if_exists(¶meters[1], parameters.get(2))
{
Rc::new(move |tuple| {
let text = to_string(&dataset, &text(tuple)?)?;
Some(regex.is_match(&text).into())
})
} else {
let pattern = self.expression_evaluator(
¶meters[1],
encoded_variables,
stat_children,
);
let flags = parameters.get(2).map(|flags| {
self.expression_evaluator(flags, encoded_variables, stat_children)
});
Rc::new(move |tuple| {
let pattern = to_simple_string(&dataset, &pattern(tuple)?)?;
let options = if let Some(flags) = &flags {
Some(to_simple_string(&dataset, &flags(tuple)?)?)
} else {
None
};
let regex = compile_pattern(&pattern, options.as_deref())?;
let text = to_string(&dataset, &text(tuple)?)?;
Some(regex.is_match(&text).into())
})
}
}
Function::Triple => {
let s = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let p = self.expression_evaluator(
¶meters[1],
encoded_variables,
stat_children,
);
let o = self.expression_evaluator(
¶meters[2],
encoded_variables,
stat_children,
);
Rc::new(move |tuple| {
let s = s(tuple)?;
let p = p(tuple)?;
let o = o(tuple)?;
(!s.is_literal()
&& !s.is_default_graph()
&& p.is_named_node()
&& !o.is_default_graph())
.then(|| EncodedTriple::new(s, p, o).into())
})
}
Function::Subject => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
Rc::new(move |tuple| {
if let EncodedTerm::Triple(t) = e(tuple)? {
Some(t.subject.clone())
} else {
None
}
})
}
Function::Predicate => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
Rc::new(move |tuple| {
if let EncodedTerm::Triple(t) = e(tuple)? {
Some(t.predicate.clone())
} else {
None
}
})
}
Function::Object => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
Rc::new(move |tuple| {
if let EncodedTerm::Triple(t) = e(tuple)? {
Some(t.object.clone())
} else {
None
}
})
}
Function::IsTriple => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
Rc::new(move |tuple| Some(e(tuple)?.is_triple().into()))
}
Function::Custom(function_name) => {
if let Some(function) = self.custom_functions.get(function_name).cloned() {
let args = parameters
.iter()
.map(|e| {
self.expression_evaluator(e, encoded_variables, stat_children)
})
.collect::<Vec<_>>();
let dataset = Rc::clone(&self.dataset);
return Rc::new(move |tuple| {
let args = args
.iter()
.map(|f| dataset.decode_term(&f(tuple)?).ok())
.collect::<Option<Vec<_>>>()?;
Some(dataset.encode_term(&function(&args)?))
});
}
match function_name.as_ref() {
xsd::STRING => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| {
Some(build_string_literal_from_id(to_string_id(
&dataset,
&e(tuple)?,
)?))
})
}
xsd::BOOLEAN => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
Rc::new(move |tuple| match e(tuple)? {
EncodedTerm::BooleanLiteral(value) => Some(value.into()),
EncodedTerm::FloatLiteral(value) => {
Some(Boolean::from(value).into())
}
EncodedTerm::DoubleLiteral(value) => {
Some(Boolean::from(value).into())
}
EncodedTerm::IntegerLiteral(value) => {
Some(Boolean::from(value).into())
}
EncodedTerm::DecimalLiteral(value) => {
Some(Boolean::from(value).into())
}
EncodedTerm::SmallStringLiteral(value) => {
parse_boolean_str(&value)
}
_ => None,
})
}
xsd::DOUBLE => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| match e(tuple)? {
EncodedTerm::FloatLiteral(value) => {
Some(Double::from(value).into())
}
EncodedTerm::DoubleLiteral(value) => Some(value.into()),
EncodedTerm::IntegerLiteral(value) => {
Some(Double::from(value).into())
}
EncodedTerm::DecimalLiteral(value) => {
Some(Double::from(value).into())
}
EncodedTerm::BooleanLiteral(value) => {
Some(Double::from(value).into())
}
EncodedTerm::SmallStringLiteral(value) => {
parse_double_str(&value)
}
EncodedTerm::BigStringLiteral { value_id } => {
parse_double_str(&dataset.get_str(&value_id).ok()??)
}
_ => None,
})
}
xsd::FLOAT => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| match e(tuple)? {
EncodedTerm::FloatLiteral(value) => Some(value.into()),
EncodedTerm::DoubleLiteral(value) => {
Some(Float::from(value).into())
}
EncodedTerm::IntegerLiteral(value) => {
Some(Float::from(value).into())
}
EncodedTerm::DecimalLiteral(value) => {
Some(Float::from(value).into())
}
EncodedTerm::BooleanLiteral(value) => {
Some(Float::from(value).into())
}
EncodedTerm::SmallStringLiteral(value) => {
parse_float_str(&value)
}
EncodedTerm::BigStringLiteral { value_id } => {
parse_float_str(&dataset.get_str(&value_id).ok()??)
}
_ => None,
})
}
xsd::INTEGER => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| match e(tuple)? {
EncodedTerm::FloatLiteral(value) => {
Some(Integer::try_from(value).ok()?.into())
}
EncodedTerm::DoubleLiteral(value) => {
Some(Integer::try_from(value).ok()?.into())
}
EncodedTerm::IntegerLiteral(value) => Some(value.into()),
EncodedTerm::DecimalLiteral(value) => {
Some(Integer::try_from(value).ok()?.into())
}
EncodedTerm::BooleanLiteral(value) => {
Some(Integer::from(value).into())
}
EncodedTerm::SmallStringLiteral(value) => {
parse_integer_str(&value)
}
EncodedTerm::BigStringLiteral { value_id } => {
parse_integer_str(&dataset.get_str(&value_id).ok()??)
}
_ => None,
})
}
xsd::DECIMAL => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| match e(tuple)? {
EncodedTerm::FloatLiteral(value) => {
Some(Decimal::try_from(value).ok()?.into())
}
EncodedTerm::DoubleLiteral(value) => {
Some(Decimal::try_from(value).ok()?.into())
}
EncodedTerm::IntegerLiteral(value) => {
Some(Decimal::from(value).into())
}
EncodedTerm::DecimalLiteral(value) => Some(value.into()),
EncodedTerm::BooleanLiteral(value) => {
Some(Decimal::from(value).into())
}
EncodedTerm::SmallStringLiteral(value) => {
parse_decimal_str(&value)
}
EncodedTerm::BigStringLiteral { value_id } => {
parse_decimal_str(&dataset.get_str(&value_id).ok()??)
}
_ => None,
})
}
xsd::DATE => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| match e(tuple)? {
EncodedTerm::DateLiteral(value) => Some(value.into()),
EncodedTerm::DateTimeLiteral(value) => {
Some(Date::try_from(value).ok()?.into())
}
EncodedTerm::SmallStringLiteral(value) => {
parse_date_str(&value)
}
EncodedTerm::BigStringLiteral { value_id } => {
parse_date_str(&dataset.get_str(&value_id).ok()??)
}
_ => None,
})
}
xsd::TIME => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| match e(tuple)? {
EncodedTerm::TimeLiteral(value) => Some(value.into()),
EncodedTerm::DateTimeLiteral(value) => {
Some(Time::from(value).into())
}
EncodedTerm::SmallStringLiteral(value) => {
parse_time_str(&value)
}
EncodedTerm::BigStringLiteral { value_id } => {
parse_time_str(&dataset.get_str(&value_id).ok()??)
}
_ => None,
})
}
xsd::DATE_TIME => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| match e(tuple)? {
EncodedTerm::DateTimeLiteral(value) => Some(value.into()),
EncodedTerm::DateLiteral(value) => {
Some(DateTime::try_from(value).ok()?.into())
}
EncodedTerm::SmallStringLiteral(value) => {
parse_date_time_str(&value)
}
EncodedTerm::BigStringLiteral { value_id } => {
parse_date_time_str(&dataset.get_str(&value_id).ok()??)
}
_ => None,
})
}
xsd::DURATION => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| match e(tuple)? {
EncodedTerm::DurationLiteral(value) => Some(value.into()),
EncodedTerm::YearMonthDurationLiteral(value) => {
Some(Duration::from(value).into())
}
EncodedTerm::DayTimeDurationLiteral(value) => {
Some(Duration::from(value).into())
}
EncodedTerm::SmallStringLiteral(value) => {
parse_duration_str(&value)
}
EncodedTerm::BigStringLiteral { value_id } => {
parse_duration_str(&dataset.get_str(&value_id).ok()??)
}
_ => None,
})
}
xsd::YEAR_MONTH_DURATION => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| match e(tuple)? {
EncodedTerm::DurationLiteral(value) => {
Some(YearMonthDuration::try_from(value).ok()?.into())
}
EncodedTerm::YearMonthDurationLiteral(value) => {
Some(value.into())
}
EncodedTerm::SmallStringLiteral(value) => {
parse_year_month_duration_str(&value)
}
EncodedTerm::BigStringLiteral { value_id } => {
parse_year_month_duration_str(
&dataset.get_str(&value_id).ok()??,
)
}
_ => None,
})
}
xsd::DAY_TIME_DURATION => {
let e = self.expression_evaluator(
¶meters[0],
encoded_variables,
stat_children,
);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| match e(tuple)? {
EncodedTerm::DurationLiteral(value) => {
Some(DayTimeDuration::try_from(value).ok()?.into())
}
EncodedTerm::DayTimeDurationLiteral(value) => {
Some(value.into())
}
EncodedTerm::SmallStringLiteral(value) => {
parse_day_time_duration_str(&value)
}
EncodedTerm::BigStringLiteral { value_id } => {
parse_day_time_duration_str(
&dataset.get_str(&value_id).ok()??,
)
}
_ => None,
})
}
_ => Rc::new(|_| None),
}
}
}
}
}
}
fn hash<H: Digest>(
&self,
parameters: &[Expression],
encoded_variables: &mut Vec<Variable>,
stat_children: &mut Vec<Rc<EvalNodeWithStats>>,
) -> Rc<dyn Fn(&EncodedTuple) -> Option<EncodedTerm>> {
let arg = self.expression_evaluator(¶meters[0], encoded_variables, stat_children);
let dataset = Rc::clone(&self.dataset);
Rc::new(move |tuple| {
let input = to_simple_string(&dataset, &arg(tuple)?)?;
let hash = hex::encode(H::new().chain_update(input.as_str()).finalize());
Some(build_string_literal(&dataset, &hash))
})
}
fn encode_term<'b>(&self, term: impl Into<TermRef<'b>>) -> EncodedTerm {
self.dataset.encode_term(term)
}
fn encode_triple(&self, triple: &GroundTriple) -> EncodedTerm {
EncodedTriple::new(
match &triple.subject {
GroundSubject::NamedNode(node) => self.encode_term(node),
GroundSubject::Triple(triple) => self.encode_triple(triple),
},
self.encode_term(&triple.predicate),
match &triple.object {
GroundTerm::NamedNode(node) => self.encode_term(node),
GroundTerm::Literal(literal) => self.encode_term(literal),
GroundTerm::Triple(triple) => self.encode_triple(triple),
},
)
.into()
}
fn encode_property_path(&self, path: &PropertyPathExpression) -> Rc<PropertyPath> {
Rc::new(match path {
PropertyPathExpression::NamedNode(node) => PropertyPath::Path(self.encode_term(node)),
PropertyPathExpression::Reverse(p) => {
PropertyPath::Reverse(self.encode_property_path(p))
}
PropertyPathExpression::Sequence(a, b) => {
PropertyPath::Sequence(self.encode_property_path(a), self.encode_property_path(b))
}
PropertyPathExpression::Alternative(a, b) => PropertyPath::Alternative(
self.encode_property_path(a),
self.encode_property_path(b),
),
PropertyPathExpression::ZeroOrMore(p) => {
PropertyPath::ZeroOrMore(self.encode_property_path(p))
}
PropertyPathExpression::OneOrMore(p) => {
PropertyPath::OneOrMore(self.encode_property_path(p))
}
PropertyPathExpression::ZeroOrOne(p) => {
PropertyPath::ZeroOrOne(self.encode_property_path(p))
}
PropertyPathExpression::NegatedPropertySet(ps) => {
PropertyPath::NegatedPropertySet(ps.iter().map(|p| self.encode_term(p)).collect())
}
})
}
fn template_value_from_term_or_variable(
&self,
term_or_variable: &TermPattern,
variables: &mut Vec<Variable>,
bnodes: &mut Vec<BlankNode>,
) -> TripleTemplateValue {
match term_or_variable {
TermPattern::Variable(variable) => {
TripleTemplateValue::Variable(encode_variable(variables, variable))
}
TermPattern::NamedNode(node) => TripleTemplateValue::Constant(self.encode_term(node)),
TermPattern::BlankNode(bnode) => {
TripleTemplateValue::BlankNode(bnode_key(bnodes, bnode))
}
TermPattern::Literal(literal) => {
TripleTemplateValue::Constant(self.encode_term(literal))
}
TermPattern::Triple(triple) => match (
self.template_value_from_term_or_variable(&triple.subject, variables, bnodes),
self.template_value_from_named_node_or_variable(&triple.predicate, variables),
self.template_value_from_term_or_variable(&triple.object, variables, bnodes),
) {
(
TripleTemplateValue::Constant(subject),
TripleTemplateValue::Constant(predicate),
TripleTemplateValue::Constant(object),
) => TripleTemplateValue::Constant(
EncodedTriple {
subject,
predicate,
object,
}
.into(),
),
(subject, predicate, object) => {
TripleTemplateValue::Triple(Box::new(TripleTemplate {
subject,
predicate,
object,
}))
}
},
}
}
fn template_value_from_named_node_or_variable(
&self,
named_node_or_variable: &NamedNodePattern,
variables: &mut Vec<Variable>,
) -> TripleTemplateValue {
match named_node_or_variable {
NamedNodePattern::Variable(variable) => {
TripleTemplateValue::Variable(encode_variable(variables, variable))
}
NamedNodePattern::NamedNode(term) => {
TripleTemplateValue::Constant(self.encode_term(term))
}
}
}
}
fn to_bool(term: &EncodedTerm) -> Option<bool> {
match term {
EncodedTerm::BooleanLiteral(value) => Some((*value).into()),
EncodedTerm::SmallStringLiteral(value) => Some(!value.is_empty()),
EncodedTerm::BigStringLiteral { .. } => {
Some(false) }
EncodedTerm::FloatLiteral(value) => Some(Boolean::from(*value).into()),
EncodedTerm::DoubleLiteral(value) => Some(Boolean::from(*value).into()),
EncodedTerm::IntegerLiteral(value) => Some(Boolean::from(*value).into()),
EncodedTerm::DecimalLiteral(value) => Some(Boolean::from(*value).into()),
_ => None,
}
}
fn to_string_id(dataset: &DatasetView, term: &EncodedTerm) -> Option<SmallStringOrId> {
match term {
EncodedTerm::NamedNode { iri_id } => Some(
if let Ok(value) = SmallString::try_from(dataset.get_str(iri_id).ok()??.as_str()) {
value.into()
} else {
SmallStringOrId::Big(*iri_id)
},
),
EncodedTerm::DefaultGraph
| EncodedTerm::NumericalBlankNode { .. }
| EncodedTerm::SmallBlankNode { .. }
| EncodedTerm::BigBlankNode { .. }
| EncodedTerm::Triple(_) => None,
EncodedTerm::SmallStringLiteral(value)
| EncodedTerm::SmallSmallLangStringLiteral { value, .. }
| EncodedTerm::SmallBigLangStringLiteral { value, .. }
| EncodedTerm::SmallTypedLiteral { value, .. } => Some((*value).into()),
EncodedTerm::BigStringLiteral { value_id }
| EncodedTerm::BigSmallLangStringLiteral { value_id, .. }
| EncodedTerm::BigBigLangStringLiteral { value_id, .. }
| EncodedTerm::BigTypedLiteral { value_id, .. } => Some((*value_id).into()),
EncodedTerm::BooleanLiteral(value) => Some(build_string_id(
dataset,
if bool::from(*value) { "true" } else { "false" },
)),
EncodedTerm::FloatLiteral(value) => Some(build_string_id(dataset, &value.to_string())),
EncodedTerm::DoubleLiteral(value) => Some(build_string_id(dataset, &value.to_string())),
EncodedTerm::IntegerLiteral(value) => Some(build_string_id(dataset, &value.to_string())),
EncodedTerm::DecimalLiteral(value) => Some(build_string_id(dataset, &value.to_string())),
EncodedTerm::DateTimeLiteral(value) => Some(build_string_id(dataset, &value.to_string())),
EncodedTerm::TimeLiteral(value) => Some(build_string_id(dataset, &value.to_string())),
EncodedTerm::DateLiteral(value) => Some(build_string_id(dataset, &value.to_string())),
EncodedTerm::GYearMonthLiteral(value) => Some(build_string_id(dataset, &value.to_string())),
EncodedTerm::GYearLiteral(value) => Some(build_string_id(dataset, &value.to_string())),
EncodedTerm::GMonthDayLiteral(value) => Some(build_string_id(dataset, &value.to_string())),
EncodedTerm::GDayLiteral(value) => Some(build_string_id(dataset, &value.to_string())),
EncodedTerm::GMonthLiteral(value) => Some(build_string_id(dataset, &value.to_string())),
EncodedTerm::DurationLiteral(value) => Some(build_string_id(dataset, &value.to_string())),
EncodedTerm::YearMonthDurationLiteral(value) => {
Some(build_string_id(dataset, &value.to_string()))
}
EncodedTerm::DayTimeDurationLiteral(value) => {
Some(build_string_id(dataset, &value.to_string()))
}
}
}
fn to_simple_string(dataset: &DatasetView, term: &EncodedTerm) -> Option<String> {
match term {
EncodedTerm::SmallStringLiteral(value) => Some((*value).into()),
EncodedTerm::BigStringLiteral { value_id } => dataset.get_str(value_id).ok()?,
_ => None,
}
}
fn to_simple_string_id(term: &EncodedTerm) -> Option<SmallStringOrId> {
match term {
EncodedTerm::SmallStringLiteral(value) => Some((*value).into()),
EncodedTerm::BigStringLiteral { value_id } => Some((*value_id).into()),
_ => None,
}
}
fn to_string(dataset: &DatasetView, term: &EncodedTerm) -> Option<String> {
match term {
EncodedTerm::SmallStringLiteral(value)
| EncodedTerm::SmallSmallLangStringLiteral { value, .. }
| EncodedTerm::SmallBigLangStringLiteral { value, .. } => Some((*value).into()),
EncodedTerm::BigStringLiteral { value_id }
| EncodedTerm::BigSmallLangStringLiteral { value_id, .. }
| EncodedTerm::BigBigLangStringLiteral { value_id, .. } => {
dataset.get_str(value_id).ok()?
}
_ => None,
}
}
fn to_string_and_language(
dataset: &DatasetView,
term: &EncodedTerm,
) -> Option<(String, Option<SmallStringOrId>)> {
match term {
EncodedTerm::SmallStringLiteral(value) => Some(((*value).into(), None)),
EncodedTerm::BigStringLiteral { value_id } => {
Some((dataset.get_str(value_id).ok()??, None))
}
EncodedTerm::SmallSmallLangStringLiteral { value, language } => {
Some(((*value).into(), Some((*language).into())))
}
EncodedTerm::SmallBigLangStringLiteral { value, language_id } => {
Some(((*value).into(), Some((*language_id).into())))
}
EncodedTerm::BigSmallLangStringLiteral { value_id, language } => {
Some((dataset.get_str(value_id).ok()??, Some((*language).into())))
}
EncodedTerm::BigBigLangStringLiteral {
value_id,
language_id,
} => Some((
dataset.get_str(value_id).ok()??,
Some((*language_id).into()),
)),
_ => None,
}
}
fn build_named_node(dataset: &DatasetView, iri: &str) -> EncodedTerm {
dataset.encode_term(NamedNodeRef::new_unchecked(iri))
}
fn encode_named_node(dataset: &DatasetView, node: NamedNodeRef<'_>) -> EncodedTerm {
dataset.encode_term(node)
}
fn build_string_literal(dataset: &DatasetView, value: &str) -> EncodedTerm {
build_string_literal_from_id(build_string_id(dataset, value))
}
fn build_string_literal_from_id(id: SmallStringOrId) -> EncodedTerm {
match id {
SmallStringOrId::Small(value) => EncodedTerm::SmallStringLiteral(value),
SmallStringOrId::Big(value_id) => EncodedTerm::BigStringLiteral { value_id },
}
}
fn build_lang_string_literal(
dataset: &DatasetView,
value: &str,
language_id: SmallStringOrId,
) -> EncodedTerm {
build_lang_string_literal_from_id(build_string_id(dataset, value), language_id)
}
fn build_lang_string_literal_from_id(
value_id: SmallStringOrId,
language_id: SmallStringOrId,
) -> EncodedTerm {
match (value_id, language_id) {
(SmallStringOrId::Small(value), SmallStringOrId::Small(language)) => {
EncodedTerm::SmallSmallLangStringLiteral { value, language }
}
(SmallStringOrId::Small(value), SmallStringOrId::Big(language_id)) => {
EncodedTerm::SmallBigLangStringLiteral { value, language_id }
}
(SmallStringOrId::Big(value_id), SmallStringOrId::Small(language)) => {
EncodedTerm::BigSmallLangStringLiteral { value_id, language }
}
(SmallStringOrId::Big(value_id), SmallStringOrId::Big(language_id)) => {
EncodedTerm::BigBigLangStringLiteral {
value_id,
language_id,
}
}
}
}
fn build_plain_literal(
dataset: &DatasetView,
value: &str,
language: Option<SmallStringOrId>,
) -> EncodedTerm {
if let Some(language_id) = language {
build_lang_string_literal(dataset, value, language_id)
} else {
build_string_literal(dataset, value)
}
}
fn build_string_id(dataset: &DatasetView, value: &str) -> SmallStringOrId {
if let Ok(value) = SmallString::try_from(value) {
value.into()
} else {
let id = StrHash::new(value);
dataset.insert_str(&id, value);
SmallStringOrId::Big(id)
}
}
fn build_language_id(dataset: &DatasetView, value: &EncodedTerm) -> Option<SmallStringOrId> {
let mut language = to_simple_string(dataset, value)?;
language.make_ascii_lowercase();
Some(build_string_id(
dataset,
LanguageTag::parse(language).ok()?.as_str(),
))
}
fn to_argument_compatible_strings(
dataset: &DatasetView,
arg1: &EncodedTerm,
arg2: &EncodedTerm,
) -> Option<(String, String, Option<SmallStringOrId>)> {
let (value1, language1) = to_string_and_language(dataset, arg1)?;
let (value2, language2) = to_string_and_language(dataset, arg2)?;
(language2.is_none() || language1 == language2).then_some((value1, value2, language1))
}
fn compile_static_pattern_if_exists(
pattern: &Expression,
options: Option<&Expression>,
) -> Option<Regex> {
let static_pattern = if let Expression::Literal(pattern) = pattern {
(pattern.datatype() == xsd::STRING).then(|| pattern.value())
} else {
None
};
let static_options = if let Some(options) = options {
if let Expression::Literal(options) = options {
(options.datatype() == xsd::STRING).then(|| Some(options.value()))
} else {
None
}
} else {
Some(None)
};
if let (Some(static_pattern), Some(static_options)) = (static_pattern, static_options) {
compile_pattern(static_pattern, static_options)
} else {
None
}
}
pub(super) fn compile_pattern(pattern: &str, flags: Option<&str>) -> Option<Regex> {
let mut regex_builder = RegexBuilder::new(pattern);
regex_builder.size_limit(REGEX_SIZE_LIMIT);
if let Some(flags) = flags {
for flag in flags.chars() {
match flag {
's' => {
regex_builder.dot_matches_new_line(true);
}
'm' => {
regex_builder.multi_line(true);
}
'i' => {
regex_builder.case_insensitive(true);
}
'x' => {
regex_builder.ignore_whitespace(true);
}
_ => (), }
}
}
regex_builder.build().ok()
}
fn decode_bindings(
dataset: Rc<DatasetView>,
iter: EncodedTuplesIterator,
variables: Arc<[Variable]>,
) -> QuerySolutionIter {
let tuple_size = variables.len();
QuerySolutionIter::new(
variables,
Box::new(iter.map(move |values| {
let mut result = vec![None; tuple_size];
for (i, value) in values?.iter().enumerate() {
if let Some(term) = value {
result[i] = Some(dataset.decode_term(&term)?)
}
}
Ok(result)
})),
)
}
fn encode_bindings(
dataset: Rc<DatasetView>,
variables: Rc<[Variable]>,
iter: QuerySolutionIter,
) -> EncodedTuplesIterator {
Box::new(iter.map(move |solution| {
let mut encoded_terms = EncodedTuple::with_capacity(variables.len());
for (variable, term) in solution?.iter() {
put_variable_value(
variable,
&variables,
dataset.encode_term(term),
&mut encoded_terms,
)
}
Ok(encoded_terms)
}))
}
fn equals(a: &EncodedTerm, b: &EncodedTerm) -> Option<bool> {
match a {
EncodedTerm::DefaultGraph
| EncodedTerm::NamedNode { .. }
| EncodedTerm::NumericalBlankNode { .. }
| EncodedTerm::SmallBlankNode { .. }
| EncodedTerm::BigBlankNode { .. }
| EncodedTerm::SmallSmallLangStringLiteral { .. }
| EncodedTerm::SmallBigLangStringLiteral { .. }
| EncodedTerm::BigSmallLangStringLiteral { .. }
| EncodedTerm::BigBigLangStringLiteral { .. } => Some(a == b),
EncodedTerm::SmallStringLiteral(a) => match b {
EncodedTerm::SmallStringLiteral(b) => Some(a == b),
EncodedTerm::SmallTypedLiteral { .. } | EncodedTerm::BigTypedLiteral { .. } => None,
_ => Some(false),
},
EncodedTerm::BigStringLiteral { value_id: a } => match b {
EncodedTerm::BigStringLiteral { value_id: b } => Some(a == b),
EncodedTerm::SmallTypedLiteral { .. } | EncodedTerm::BigTypedLiteral { .. } => None,
_ => Some(false),
},
EncodedTerm::SmallTypedLiteral { .. } => match b {
EncodedTerm::SmallTypedLiteral { .. } if a == b => Some(true),
EncodedTerm::NamedNode { .. }
| EncodedTerm::NumericalBlankNode { .. }
| EncodedTerm::SmallBlankNode { .. }
| EncodedTerm::BigBlankNode { .. }
| EncodedTerm::SmallSmallLangStringLiteral { .. }
| EncodedTerm::SmallBigLangStringLiteral { .. }
| EncodedTerm::BigSmallLangStringLiteral { .. }
| EncodedTerm::BigBigLangStringLiteral { .. }
| EncodedTerm::BigTypedLiteral { .. } => Some(false),
_ => None,
},
EncodedTerm::BigTypedLiteral { .. } => match b {
EncodedTerm::BigTypedLiteral { .. } if a == b => Some(true),
EncodedTerm::NamedNode { .. }
| EncodedTerm::NumericalBlankNode { .. }
| EncodedTerm::SmallBlankNode { .. }
| EncodedTerm::BigBlankNode { .. }
| EncodedTerm::SmallSmallLangStringLiteral { .. }
| EncodedTerm::SmallBigLangStringLiteral { .. }
| EncodedTerm::BigSmallLangStringLiteral { .. }
| EncodedTerm::BigBigLangStringLiteral { .. }
| EncodedTerm::SmallTypedLiteral { .. } => Some(false),
_ => None,
},
EncodedTerm::BooleanLiteral(a) => match b {
EncodedTerm::BooleanLiteral(b) => Some(a == b),
_ if b.is_unknown_typed_literal() => None,
_ => Some(false),
},
EncodedTerm::FloatLiteral(a) => match b {
EncodedTerm::FloatLiteral(b) => Some(a == b),
EncodedTerm::DoubleLiteral(b) => Some(Double::from(*a) == *b),
EncodedTerm::IntegerLiteral(b) => Some(*a == (*b).into()),
EncodedTerm::DecimalLiteral(b) => Some(*a == (*b).into()),
_ if b.is_unknown_typed_literal() => None,
_ => Some(false),
},
EncodedTerm::DoubleLiteral(a) => match b {
EncodedTerm::FloatLiteral(b) => Some(*a == (*b).into()),
EncodedTerm::DoubleLiteral(b) => Some(a == b),
EncodedTerm::IntegerLiteral(b) => Some(*a == (*b).into()),
EncodedTerm::DecimalLiteral(b) => Some(*a == (*b).into()),
_ if b.is_unknown_typed_literal() => None,
_ => Some(false),
},
EncodedTerm::IntegerLiteral(a) => match b {
EncodedTerm::FloatLiteral(b) => Some(Float::from(*a) == *b),
EncodedTerm::DoubleLiteral(b) => Some(Double::from(*a) == *b),
EncodedTerm::IntegerLiteral(b) => Some(a == b),
EncodedTerm::DecimalLiteral(b) => Some(Decimal::from(*a) == *b),
_ if b.is_unknown_typed_literal() => None,
_ => Some(false),
},
EncodedTerm::DecimalLiteral(a) => match b {
EncodedTerm::FloatLiteral(b) => Some(Float::from(*a) == *b),
EncodedTerm::DoubleLiteral(b) => Some(Double::from(*a) == *b),
EncodedTerm::IntegerLiteral(b) => Some(*a == (*b).into()),
EncodedTerm::DecimalLiteral(b) => Some(a == b),
_ if b.is_unknown_typed_literal() => None,
_ => Some(false),
},
EncodedTerm::DateTimeLiteral(a) => match b {
EncodedTerm::DateTimeLiteral(b) => Some(a == b),
_ if b.is_unknown_typed_literal() => None,
_ => Some(false),
},
EncodedTerm::TimeLiteral(a) => match b {
EncodedTerm::TimeLiteral(b) => Some(a == b),
_ if b.is_unknown_typed_literal() => None,
_ => Some(false),
},
EncodedTerm::DateLiteral(a) => match b {
EncodedTerm::DateLiteral(b) => Some(a == b),
_ if b.is_unknown_typed_literal() => None,
_ => Some(false),
},
EncodedTerm::GYearMonthLiteral(a) => match b {
EncodedTerm::GYearMonthLiteral(b) => Some(a == b),
_ if b.is_unknown_typed_literal() => None,
_ => Some(false),
},
EncodedTerm::GYearLiteral(a) => match b {
EncodedTerm::GYearLiteral(b) => Some(a == b),
_ if b.is_unknown_typed_literal() => None,
_ => Some(false),
},
EncodedTerm::GMonthDayLiteral(a) => match b {
EncodedTerm::GMonthDayLiteral(b) => Some(a == b),
_ if b.is_unknown_typed_literal() => None,
_ => Some(false),
},
EncodedTerm::GDayLiteral(a) => match b {
EncodedTerm::GDayLiteral(b) => Some(a == b),
_ if b.is_unknown_typed_literal() => None,
_ => Some(false),
},
EncodedTerm::GMonthLiteral(a) => match b {
EncodedTerm::GMonthLiteral(b) => Some(a == b),
_ if b.is_unknown_typed_literal() => None,
_ => Some(false),
},
EncodedTerm::DurationLiteral(a) => match b {
EncodedTerm::DurationLiteral(b) => Some(a == b),
EncodedTerm::YearMonthDurationLiteral(b) => Some(a == b),
EncodedTerm::DayTimeDurationLiteral(b) => Some(a == b),
_ if b.is_unknown_typed_literal() => None,
_ => Some(false),
},
EncodedTerm::YearMonthDurationLiteral(a) => match b {
EncodedTerm::DurationLiteral(b) => Some(a == b),
EncodedTerm::YearMonthDurationLiteral(b) => Some(a == b),
EncodedTerm::DayTimeDurationLiteral(b) => Some(a == b),
_ if b.is_unknown_typed_literal() => None,
_ => Some(false),
},
EncodedTerm::DayTimeDurationLiteral(a) => match b {
EncodedTerm::DurationLiteral(b) => Some(a == b),
EncodedTerm::YearMonthDurationLiteral(b) => Some(a == b),
EncodedTerm::DayTimeDurationLiteral(b) => Some(a == b),
_ if b.is_unknown_typed_literal() => None,
_ => Some(false),
},
EncodedTerm::Triple(a) => {
if let EncodedTerm::Triple(b) = b {
Some(
equals(&a.subject, &b.subject)?
&& equals(&a.predicate, &b.predicate)?
&& equals(&a.object, &b.object)?,
)
} else {
Some(false)
}
}
}
}
fn cmp_terms(dataset: &DatasetView, a: Option<&EncodedTerm>, b: Option<&EncodedTerm>) -> Ordering {
match (a, b) {
(Some(a), Some(b)) => match a {
EncodedTerm::SmallBlankNode(a) => match b {
EncodedTerm::SmallBlankNode(b) => a.cmp(b),
EncodedTerm::BigBlankNode { id_id: b } => {
compare_str_str_id(dataset, a, b).unwrap_or(Ordering::Equal)
}
EncodedTerm::NumericalBlankNode { id: b } => a
.as_str()
.cmp(BlankNode::new_from_unique_id(u128::from_be_bytes(*b)).as_str()),
_ => Ordering::Less,
},
EncodedTerm::BigBlankNode { id_id: a } => match b {
EncodedTerm::SmallBlankNode(b) => {
compare_str_id_str(dataset, a, b).unwrap_or(Ordering::Equal)
}
EncodedTerm::BigBlankNode { id_id: b } => {
compare_str_ids(dataset, a, b).unwrap_or(Ordering::Equal)
}
EncodedTerm::NumericalBlankNode { id: b } => compare_str_id_str(
dataset,
a,
BlankNode::new_from_unique_id(u128::from_be_bytes(*b)).as_str(),
)
.unwrap_or(Ordering::Equal),
_ => Ordering::Less,
},
EncodedTerm::NumericalBlankNode { id: a } => {
let a = BlankNode::new_from_unique_id(u128::from_be_bytes(*a));
match b {
EncodedTerm::SmallBlankNode(b) => a.as_str().cmp(b),
EncodedTerm::BigBlankNode { id_id: b } => {
compare_str_str_id(dataset, a.as_str(), b).unwrap_or(Ordering::Equal)
}
EncodedTerm::NumericalBlankNode { id: b } => a
.as_str()
.cmp(BlankNode::new_from_unique_id(u128::from_be_bytes(*b)).as_str()),
_ => Ordering::Less,
}
}
EncodedTerm::NamedNode { iri_id: a } => match b {
EncodedTerm::NamedNode { iri_id: b } => {
compare_str_ids(dataset, a, b).unwrap_or(Ordering::Equal)
}
_ if b.is_blank_node() => Ordering::Greater,
_ => Ordering::Less,
},
EncodedTerm::Triple(a) => match b {
EncodedTerm::Triple(b) => {
match cmp_terms(dataset, Some(&a.subject), Some(&b.subject)) {
Ordering::Equal => {
match cmp_terms(dataset, Some(&a.predicate), Some(&b.predicate)) {
Ordering::Equal => {
cmp_terms(dataset, Some(&a.object), Some(&b.object))
}
o => o,
}
}
o => o,
}
}
_ => Ordering::Greater,
},
_ => match b {
_ if b.is_named_node() || b.is_blank_node() => Ordering::Greater,
_ if b.is_triple() => Ordering::Less,
_ => {
if let Some(ord) = partial_cmp_literals(dataset, a, b) {
ord
} else if let (Ok(Term::Literal(a)), Ok(Term::Literal(b))) =
(dataset.decode_term(a), dataset.decode_term(b))
{
(a.value(), a.datatype(), a.language()).cmp(&(
b.value(),
b.datatype(),
b.language(),
))
} else {
Ordering::Equal }
}
},
},
(Some(_), None) => Ordering::Greater,
(None, Some(_)) => Ordering::Less,
(None, None) => Ordering::Equal,
}
}
fn partial_cmp(dataset: &DatasetView, a: &EncodedTerm, b: &EncodedTerm) -> Option<Ordering> {
if a == b {
Some(Ordering::Equal)
} else if let EncodedTerm::Triple(a) = a {
if let EncodedTerm::Triple(b) = b {
match partial_cmp(dataset, &a.subject, &b.subject) {
Some(Ordering::Equal) => match partial_cmp(dataset, &a.predicate, &b.predicate) {
Some(Ordering::Equal) => partial_cmp(dataset, &a.object, &b.object),
o => o,
},
o => o,
}
} else {
None
}
} else {
partial_cmp_literals(dataset, a, b)
}
}
fn partial_cmp_literals(
dataset: &DatasetView,
a: &EncodedTerm,
b: &EncodedTerm,
) -> Option<Ordering> {
match a {
EncodedTerm::SmallStringLiteral(a) => match b {
EncodedTerm::SmallStringLiteral(b) => a.partial_cmp(b),
EncodedTerm::BigStringLiteral { value_id: b } => compare_str_str_id(dataset, a, b),
_ => None,
},
EncodedTerm::BigStringLiteral { value_id: a } => match b {
EncodedTerm::SmallStringLiteral(b) => compare_str_id_str(dataset, a, b),
EncodedTerm::BigStringLiteral { value_id: b } => compare_str_ids(dataset, a, b),
_ => None,
},
EncodedTerm::SmallSmallLangStringLiteral {
value: a,
language: la,
} => match b {
EncodedTerm::SmallSmallLangStringLiteral {
value: b,
language: lb,
} if la == lb => a.partial_cmp(b),
EncodedTerm::BigSmallLangStringLiteral {
value_id: b,
language: lb,
} if la == lb => compare_str_str_id(dataset, a, b),
_ => None,
},
EncodedTerm::SmallBigLangStringLiteral {
value: a,
language_id: la,
} => match b {
EncodedTerm::SmallBigLangStringLiteral {
value: b,
language_id: lb,
} if la == lb => a.partial_cmp(b),
EncodedTerm::BigBigLangStringLiteral {
value_id: b,
language_id: lb,
} if la == lb => compare_str_str_id(dataset, a, b),
_ => None,
},
EncodedTerm::BigSmallLangStringLiteral {
value_id: a,
language: la,
} => match b {
EncodedTerm::SmallSmallLangStringLiteral {
value: b,
language: lb,
} if la == lb => compare_str_id_str(dataset, a, b),
EncodedTerm::BigSmallLangStringLiteral {
value_id: b,
language: lb,
} if la == lb => compare_str_ids(dataset, a, b),
_ => None,
},
EncodedTerm::BigBigLangStringLiteral {
value_id: a,
language_id: la,
} => match b {
EncodedTerm::SmallBigLangStringLiteral {
value: b,
language_id: lb,
} if la == lb => compare_str_id_str(dataset, a, b),
EncodedTerm::BigBigLangStringLiteral {
value_id: b,
language_id: lb,
} if la == lb => compare_str_ids(dataset, a, b),
_ => None,
},
EncodedTerm::FloatLiteral(a) => match b {
EncodedTerm::FloatLiteral(b) => a.partial_cmp(b),
EncodedTerm::DoubleLiteral(b) => Double::from(*a).partial_cmp(b),
EncodedTerm::IntegerLiteral(b) => a.partial_cmp(&Float::from(*b)),
EncodedTerm::DecimalLiteral(b) => a.partial_cmp(&(*b).into()),
_ => None,
},
EncodedTerm::DoubleLiteral(a) => match b {
EncodedTerm::FloatLiteral(b) => a.partial_cmp(&(*b).into()),
EncodedTerm::DoubleLiteral(b) => a.partial_cmp(b),
EncodedTerm::IntegerLiteral(b) => a.partial_cmp(&Double::from(*b)),
EncodedTerm::DecimalLiteral(b) => a.partial_cmp(&(*b).into()),
_ => None,
},
EncodedTerm::IntegerLiteral(a) => match b {
EncodedTerm::FloatLiteral(b) => Float::from(*a).partial_cmp(b),
EncodedTerm::DoubleLiteral(b) => Double::from(*a).partial_cmp(b),
EncodedTerm::IntegerLiteral(b) => a.partial_cmp(b),
EncodedTerm::DecimalLiteral(b) => Decimal::from(*a).partial_cmp(b),
_ => None,
},
EncodedTerm::DecimalLiteral(a) => match b {
EncodedTerm::FloatLiteral(b) => Float::from(*a).partial_cmp(b),
EncodedTerm::DoubleLiteral(b) => Double::from(*a).partial_cmp(b),
EncodedTerm::IntegerLiteral(b) => a.partial_cmp(&Decimal::from(*b)),
EncodedTerm::DecimalLiteral(b) => a.partial_cmp(b),
_ => None,
},
EncodedTerm::DateTimeLiteral(a) => {
if let EncodedTerm::DateTimeLiteral(b) = b {
a.partial_cmp(b)
} else {
None
}
}
EncodedTerm::TimeLiteral(a) => {
if let EncodedTerm::TimeLiteral(b) = b {
a.partial_cmp(b)
} else {
None
}
}
EncodedTerm::DateLiteral(a) => {
if let EncodedTerm::DateLiteral(b) = b {
a.partial_cmp(b)
} else {
None
}
}
EncodedTerm::GYearMonthLiteral(a) => {
if let EncodedTerm::GYearMonthLiteral(b) = b {
a.partial_cmp(b)
} else {
None
}
}
EncodedTerm::GYearLiteral(a) => {
if let EncodedTerm::GYearLiteral(b) = b {
a.partial_cmp(b)
} else {
None
}
}
EncodedTerm::GMonthDayLiteral(a) => {
if let EncodedTerm::GMonthDayLiteral(b) = b {
a.partial_cmp(b)
} else {
None
}
}
EncodedTerm::GDayLiteral(a) => {
if let EncodedTerm::GDayLiteral(b) = b {
a.partial_cmp(b)
} else {
None
}
}
EncodedTerm::GMonthLiteral(a) => {
if let EncodedTerm::GMonthLiteral(b) = b {
a.partial_cmp(b)
} else {
None
}
}
EncodedTerm::DurationLiteral(a) => match b {
EncodedTerm::DurationLiteral(b) => a.partial_cmp(b),
EncodedTerm::YearMonthDurationLiteral(b) => a.partial_cmp(b),
EncodedTerm::DayTimeDurationLiteral(b) => a.partial_cmp(b),
_ => None,
},
EncodedTerm::YearMonthDurationLiteral(a) => match b {
EncodedTerm::DurationLiteral(b) => a.partial_cmp(b),
EncodedTerm::YearMonthDurationLiteral(b) => a.partial_cmp(b),
EncodedTerm::DayTimeDurationLiteral(b) => a.partial_cmp(b),
_ => None,
},
EncodedTerm::DayTimeDurationLiteral(a) => match b {
EncodedTerm::DurationLiteral(b) => a.partial_cmp(b),
EncodedTerm::YearMonthDurationLiteral(b) => a.partial_cmp(b),
EncodedTerm::DayTimeDurationLiteral(b) => a.partial_cmp(b),
_ => None,
},
_ => None,
}
}
fn compare_str_ids(dataset: &DatasetView, a: &StrHash, b: &StrHash) -> Option<Ordering> {
Some(dataset.get_str(a).ok()??.cmp(&dataset.get_str(b).ok()??))
}
fn compare_str_id_str(dataset: &DatasetView, a: &StrHash, b: &str) -> Option<Ordering> {
Some(dataset.get_str(a).ok()??.as_str().cmp(b))
}
fn compare_str_str_id(dataset: &DatasetView, a: &str, b: &StrHash) -> Option<Ordering> {
Some(a.cmp(dataset.get_str(b).ok()??.as_str()))
}
fn datatype(dataset: &DatasetView, value: &EncodedTerm) -> Option<EncodedTerm> {
match value {
EncodedTerm::NamedNode { .. }
| EncodedTerm::SmallBlankNode { .. }
| EncodedTerm::BigBlankNode { .. }
| EncodedTerm::NumericalBlankNode { .. }
| EncodedTerm::DefaultGraph
| EncodedTerm::Triple(_) => None,
EncodedTerm::SmallStringLiteral(_) | EncodedTerm::BigStringLiteral { .. } => {
Some(encode_named_node(dataset, xsd::STRING))
}
EncodedTerm::SmallSmallLangStringLiteral { .. }
| EncodedTerm::SmallBigLangStringLiteral { .. }
| EncodedTerm::BigSmallLangStringLiteral { .. }
| EncodedTerm::BigBigLangStringLiteral { .. } => {
Some(encode_named_node(dataset, rdf::LANG_STRING))
}
EncodedTerm::SmallTypedLiteral { datatype_id, .. }
| EncodedTerm::BigTypedLiteral { datatype_id, .. } => Some(EncodedTerm::NamedNode {
iri_id: *datatype_id,
}),
EncodedTerm::BooleanLiteral(..) => Some(encode_named_node(dataset, xsd::BOOLEAN)),
EncodedTerm::FloatLiteral(..) => Some(encode_named_node(dataset, xsd::FLOAT)),
EncodedTerm::DoubleLiteral(..) => Some(encode_named_node(dataset, xsd::DOUBLE)),
EncodedTerm::IntegerLiteral(..) => Some(encode_named_node(dataset, xsd::INTEGER)),
EncodedTerm::DecimalLiteral(..) => Some(encode_named_node(dataset, xsd::DECIMAL)),
EncodedTerm::DateTimeLiteral(..) => Some(encode_named_node(dataset, xsd::DATE_TIME)),
EncodedTerm::TimeLiteral(..) => Some(encode_named_node(dataset, xsd::TIME)),
EncodedTerm::DateLiteral(..) => Some(encode_named_node(dataset, xsd::DATE)),
EncodedTerm::GYearMonthLiteral(..) => Some(encode_named_node(dataset, xsd::G_YEAR_MONTH)),
EncodedTerm::GYearLiteral(..) => Some(encode_named_node(dataset, xsd::G_YEAR)),
EncodedTerm::GMonthDayLiteral(..) => Some(encode_named_node(dataset, xsd::G_MONTH_DAY)),
EncodedTerm::GDayLiteral(..) => Some(encode_named_node(dataset, xsd::G_DAY)),
EncodedTerm::GMonthLiteral(..) => Some(encode_named_node(dataset, xsd::G_MONTH)),
EncodedTerm::DurationLiteral(..) => Some(encode_named_node(dataset, xsd::DURATION)),
EncodedTerm::YearMonthDurationLiteral(..) => {
Some(encode_named_node(dataset, xsd::YEAR_MONTH_DURATION))
}
EncodedTerm::DayTimeDurationLiteral(..) => {
Some(encode_named_node(dataset, xsd::DAY_TIME_DURATION))
}
}
}
enum NumericBinaryOperands {
Float(Float, Float),
Double(Double, Double),
Integer(Integer, Integer),
Decimal(Decimal, Decimal),
Duration(Duration, Duration),
YearMonthDuration(YearMonthDuration, YearMonthDuration),
DayTimeDuration(DayTimeDuration, DayTimeDuration),
DateTime(DateTime, DateTime),
Time(Time, Time),
Date(Date, Date),
DateTimeDuration(DateTime, Duration),
DateTimeYearMonthDuration(DateTime, YearMonthDuration),
DateTimeDayTimeDuration(DateTime, DayTimeDuration),
DateDuration(Date, Duration),
DateYearMonthDuration(Date, YearMonthDuration),
DateDayTimeDuration(Date, DayTimeDuration),
TimeDuration(Time, Duration),
TimeDayTimeDuration(Time, DayTimeDuration),
}
impl NumericBinaryOperands {
fn new(a: EncodedTerm, b: EncodedTerm) -> Option<Self> {
match (a, b) {
(EncodedTerm::FloatLiteral(v1), EncodedTerm::FloatLiteral(v2)) => {
Some(Self::Float(v1, v2))
}
(EncodedTerm::FloatLiteral(v1), EncodedTerm::DoubleLiteral(v2)) => {
Some(Self::Double(v1.into(), v2))
}
(EncodedTerm::FloatLiteral(v1), EncodedTerm::IntegerLiteral(v2)) => {
Some(Self::Float(v1, v2.into()))
}
(EncodedTerm::FloatLiteral(v1), EncodedTerm::DecimalLiteral(v2)) => {
Some(Self::Float(v1, v2.into()))
}
(EncodedTerm::DoubleLiteral(v1), EncodedTerm::FloatLiteral(v2)) => {
Some(Self::Double(v1, v2.into()))
}
(EncodedTerm::DoubleLiteral(v1), EncodedTerm::DoubleLiteral(v2)) => {
Some(Self::Double(v1, v2))
}
(EncodedTerm::DoubleLiteral(v1), EncodedTerm::IntegerLiteral(v2)) => {
Some(Self::Double(v1, v2.into()))
}
(EncodedTerm::DoubleLiteral(v1), EncodedTerm::DecimalLiteral(v2)) => {
Some(Self::Double(v1, v2.into()))
}
(EncodedTerm::IntegerLiteral(v1), EncodedTerm::FloatLiteral(v2)) => {
Some(Self::Float(v1.into(), v2))
}
(EncodedTerm::IntegerLiteral(v1), EncodedTerm::DoubleLiteral(v2)) => {
Some(Self::Double(v1.into(), v2))
}
(EncodedTerm::IntegerLiteral(v1), EncodedTerm::IntegerLiteral(v2)) => {
Some(Self::Integer(v1, v2))
}
(EncodedTerm::IntegerLiteral(v1), EncodedTerm::DecimalLiteral(v2)) => {
Some(Self::Decimal(v1.into(), v2))
}
(EncodedTerm::DecimalLiteral(v1), EncodedTerm::FloatLiteral(v2)) => {
Some(Self::Float(v1.into(), v2))
}
(EncodedTerm::DecimalLiteral(v1), EncodedTerm::DoubleLiteral(v2)) => {
Some(Self::Double(v1.into(), v2))
}
(EncodedTerm::DecimalLiteral(v1), EncodedTerm::IntegerLiteral(v2)) => {
Some(Self::Decimal(v1, v2.into()))
}
(EncodedTerm::DecimalLiteral(v1), EncodedTerm::DecimalLiteral(v2)) => {
Some(Self::Decimal(v1, v2))
}
(EncodedTerm::DurationLiteral(v1), EncodedTerm::DurationLiteral(v2)) => {
Some(Self::Duration(v1, v2))
}
(EncodedTerm::DurationLiteral(v1), EncodedTerm::YearMonthDurationLiteral(v2)) => {
Some(Self::Duration(v1, v2.into()))
}
(EncodedTerm::DurationLiteral(v1), EncodedTerm::DayTimeDurationLiteral(v2)) => {
Some(Self::Duration(v1, v2.into()))
}
(EncodedTerm::YearMonthDurationLiteral(v1), EncodedTerm::DurationLiteral(v2)) => {
Some(Self::Duration(v1.into(), v2))
}
(
EncodedTerm::YearMonthDurationLiteral(v1),
EncodedTerm::YearMonthDurationLiteral(v2),
) => Some(Self::YearMonthDuration(v1, v2)),
(
EncodedTerm::YearMonthDurationLiteral(v1),
EncodedTerm::DayTimeDurationLiteral(v2),
) => Some(Self::Duration(v1.into(), v2.into())),
(EncodedTerm::DayTimeDurationLiteral(v1), EncodedTerm::DurationLiteral(v2)) => {
Some(Self::Duration(v1.into(), v2))
}
(
EncodedTerm::DayTimeDurationLiteral(v1),
EncodedTerm::YearMonthDurationLiteral(v2),
) => Some(Self::Duration(v1.into(), v2.into())),
(EncodedTerm::DayTimeDurationLiteral(v1), EncodedTerm::DayTimeDurationLiteral(v2)) => {
Some(Self::DayTimeDuration(v1, v2))
}
(EncodedTerm::DateTimeLiteral(v1), EncodedTerm::DateTimeLiteral(v2)) => {
Some(Self::DateTime(v1, v2))
}
(EncodedTerm::DateLiteral(v1), EncodedTerm::DateLiteral(v2)) => {
Some(Self::Date(v1, v2))
}
(EncodedTerm::TimeLiteral(v1), EncodedTerm::TimeLiteral(v2)) => {
Some(Self::Time(v1, v2))
}
(EncodedTerm::DateTimeLiteral(v1), EncodedTerm::DurationLiteral(v2)) => {
Some(Self::DateTimeDuration(v1, v2))
}
(EncodedTerm::DateTimeLiteral(v1), EncodedTerm::YearMonthDurationLiteral(v2)) => {
Some(Self::DateTimeYearMonthDuration(v1, v2))
}
(EncodedTerm::DateTimeLiteral(v1), EncodedTerm::DayTimeDurationLiteral(v2)) => {
Some(Self::DateTimeDayTimeDuration(v1, v2))
}
(EncodedTerm::DateLiteral(v1), EncodedTerm::DurationLiteral(v2)) => {
Some(Self::DateDuration(v1, v2))
}
(EncodedTerm::DateLiteral(v1), EncodedTerm::YearMonthDurationLiteral(v2)) => {
Some(Self::DateYearMonthDuration(v1, v2))
}
(EncodedTerm::DateLiteral(v1), EncodedTerm::DayTimeDurationLiteral(v2)) => {
Some(Self::DateDayTimeDuration(v1, v2))
}
(EncodedTerm::TimeLiteral(v1), EncodedTerm::DurationLiteral(v2)) => {
Some(Self::TimeDuration(v1, v2))
}
(EncodedTerm::TimeLiteral(v1), EncodedTerm::DayTimeDurationLiteral(v2)) => {
Some(Self::TimeDayTimeDuration(v1, v2))
}
_ => None,
}
}
}
#[derive(Clone)]
enum TupleSelector {
Constant(EncodedTerm),
Variable(usize),
TriplePattern(Rc<TripleTupleSelector>),
}
impl TupleSelector {
fn from_ground_term_pattern(
term_pattern: &GroundTermPattern,
variables: &mut Vec<Variable>,
dataset: &DatasetView,
) -> Self {
match term_pattern {
GroundTermPattern::Variable(variable) => {
Self::Variable(encode_variable(variables, variable))
}
GroundTermPattern::NamedNode(term) => Self::Constant(dataset.encode_term(term)),
GroundTermPattern::Literal(term) => Self::Constant(dataset.encode_term(term)),
GroundTermPattern::Triple(triple) => {
match (
Self::from_ground_term_pattern(&triple.subject, variables, dataset),
Self::from_named_node_pattern(&triple.predicate, variables, dataset),
Self::from_ground_term_pattern(&triple.object, variables, dataset),
) {
(
Self::Constant(subject),
Self::Constant(predicate),
Self::Constant(object),
) => Self::Constant(
EncodedTriple {
subject,
predicate,
object,
}
.into(),
),
(subject, predicate, object) => {
Self::TriplePattern(Rc::new(TripleTupleSelector {
subject,
predicate,
object,
}))
}
}
}
}
}
fn from_named_node_pattern(
named_node_pattern: &NamedNodePattern,
variables: &mut Vec<Variable>,
dataset: &DatasetView,
) -> Self {
match named_node_pattern {
NamedNodePattern::Variable(variable) => {
Self::Variable(encode_variable(variables, variable))
}
NamedNodePattern::NamedNode(term) => Self::Constant(dataset.encode_term(term)),
}
}
fn from_graph_name_pattern(
graph_name_pattern: &Option<NamedNodePattern>,
variables: &mut Vec<Variable>,
dataset: &DatasetView,
) -> Self {
if let Some(graph_name_pattern) = graph_name_pattern {
Self::from_named_node_pattern(graph_name_pattern, variables, dataset)
} else {
Self::Constant(EncodedTerm::DefaultGraph)
}
}
fn get_pattern_value(&self, tuple: &EncodedTuple) -> Option<EncodedTerm> {
match self {
Self::Constant(c) => Some(c.clone()),
Self::Variable(v) => tuple.get(*v).cloned(),
Self::TriplePattern(triple) => Some(
EncodedTriple {
subject: triple.subject.get_pattern_value(tuple)?,
predicate: triple.predicate.get_pattern_value(tuple)?,
object: triple.object.get_pattern_value(tuple)?,
}
.into(),
),
}
}
}
struct TripleTupleSelector {
subject: TupleSelector,
predicate: TupleSelector,
object: TupleSelector,
}
fn put_pattern_value(
selector: &TupleSelector,
value: EncodedTerm,
tuple: &mut EncodedTuple,
) -> Option<()> {
match selector {
TupleSelector::Constant(c) => (*c == value).then_some(()),
TupleSelector::Variable(v) => {
if let Some(old) = tuple.get(*v) {
(value == *old).then_some(())
} else {
tuple.set(*v, value);
Some(())
}
}
TupleSelector::TriplePattern(triple) => {
if let EncodedTerm::Triple(value) = value {
put_pattern_value(&triple.subject, value.subject.clone(), tuple)?;
put_pattern_value(&triple.predicate, value.predicate.clone(), tuple)?;
put_pattern_value(&triple.object, value.object.clone(), tuple)
} else {
None
}
}
}
}
fn put_variable_value(
selector: &Variable,
variables: &[Variable],
value: EncodedTerm,
tuple: &mut EncodedTuple,
) {
for (i, v) in variables.iter().enumerate() {
if selector == v {
tuple.set(i, value);
break;
}
}
}
pub fn are_compatible_and_not_disjointed(a: &EncodedTuple, b: &EncodedTuple) -> bool {
let mut found_intersection = false;
for (a_value, b_value) in a.iter().zip(b.iter()) {
if let (Some(a_value), Some(b_value)) = (a_value, b_value) {
if a_value != b_value {
return false;
}
found_intersection = true;
}
}
found_intersection
}
pub enum PropertyPath {
Path(EncodedTerm),
Reverse(Rc<Self>),
Sequence(Rc<Self>, Rc<Self>),
Alternative(Rc<Self>, Rc<Self>),
ZeroOrMore(Rc<Self>),
OneOrMore(Rc<Self>),
ZeroOrOne(Rc<Self>),
NegatedPropertySet(Rc<[EncodedTerm]>),
}
#[derive(Clone)]
struct PathEvaluator {
dataset: Rc<DatasetView>,
}
impl PathEvaluator {
fn eval_closed_in_graph(
&self,
path: &PropertyPath,
start: &EncodedTerm,
end: &EncodedTerm,
graph_name: &EncodedTerm,
) -> Result<bool, EvaluationError> {
Ok(match path {
PropertyPath::Path(p) => self
.dataset
.encoded_quads_for_pattern(Some(start), Some(p), Some(end), Some(graph_name))
.next()
.transpose()?
.is_some(),
PropertyPath::Reverse(p) => self.eval_closed_in_graph(p, end, start, graph_name)?,
PropertyPath::Sequence(a, b) => self
.eval_from_in_graph(a, start, graph_name)
.find_map(|middle| {
middle
.and_then(|middle| {
Ok(self
.eval_closed_in_graph(b, &middle, end, graph_name)?
.then_some(()))
})
.transpose()
})
.transpose()?
.is_some(),
PropertyPath::Alternative(a, b) => {
self.eval_closed_in_graph(a, start, end, graph_name)?
|| self.eval_closed_in_graph(b, start, end, graph_name)?
}
PropertyPath::ZeroOrMore(p) => {
if start == end {
self.is_subject_or_object_in_graph(start, graph_name)?
} else {
look_in_transitive_closure(
self.eval_from_in_graph(p, start, graph_name),
move |e| self.eval_from_in_graph(p, &e, graph_name),
end,
)?
}
}
PropertyPath::OneOrMore(p) => look_in_transitive_closure(
self.eval_from_in_graph(p, start, graph_name),
move |e| self.eval_from_in_graph(p, &e, graph_name),
end,
)?,
PropertyPath::ZeroOrOne(p) => {
if start == end {
self.is_subject_or_object_in_graph(start, graph_name)
} else {
self.eval_closed_in_graph(p, start, end, graph_name)
}?
}
PropertyPath::NegatedPropertySet(ps) => self
.dataset
.encoded_quads_for_pattern(Some(start), None, Some(end), Some(graph_name))
.find_map(move |t| match t {
Ok(t) => {
if ps.iter().any(|p| *p == t.predicate) {
None
} else {
Some(Ok(()))
}
}
Err(e) => Some(Err(e)),
})
.transpose()?
.is_some(),
})
}
fn eval_closed_in_unknown_graph(
&self,
path: &PropertyPath,
start: &EncodedTerm,
end: &EncodedTerm,
) -> Box<dyn Iterator<Item = Result<EncodedTerm, EvaluationError>>> {
match path {
PropertyPath::Path(p) => Box::new(
self.dataset
.encoded_quads_for_pattern(Some(start), Some(p), Some(end), None)
.map(|t| Ok(t?.graph_name)),
),
PropertyPath::Reverse(p) => self.eval_closed_in_unknown_graph(p, end, start),
PropertyPath::Sequence(a, b) => {
let eval = self.clone();
let b = Rc::clone(b);
let end = end.clone();
Box::new(self.eval_from_in_unknown_graph(a, start).flat_map_ok(
move |(middle, graph_name)| {
eval.eval_closed_in_graph(&b, &middle, &end, &graph_name)
.map(|is_found| is_found.then_some(graph_name))
.transpose()
},
))
}
PropertyPath::Alternative(a, b) => Box::new(hash_deduplicate(
self.eval_closed_in_unknown_graph(a, start, end)
.chain(self.eval_closed_in_unknown_graph(b, start, end)),
)),
PropertyPath::ZeroOrMore(p) => {
let eval = self.clone();
let start2 = start.clone();
let end = end.clone();
let p = Rc::clone(p);
self.run_if_term_is_a_dataset_node(start, move |graph_name| {
look_in_transitive_closure(
Some(Ok(start2.clone())),
|e| eval.eval_from_in_graph(&p, &e, &graph_name),
&end,
)
.map(|is_found| is_found.then_some(graph_name))
.transpose()
})
}
PropertyPath::OneOrMore(p) => {
let eval = self.clone();
let end = end.clone();
let p = Rc::clone(p);
Box::new(
self.eval_from_in_unknown_graph(&p, start)
.filter_map(move |r| {
r.and_then(|(start, graph_name)| {
look_in_transitive_closure(
Some(Ok(start)),
|e| eval.eval_from_in_graph(&p, &e, &graph_name),
&end,
)
.map(|is_found| is_found.then_some(graph_name))
})
.transpose()
}),
)
}
PropertyPath::ZeroOrOne(p) => {
if start == end {
self.run_if_term_is_a_dataset_node(start, |graph_name| Some(Ok(graph_name)))
} else {
let eval = self.clone();
let start2 = start.clone();
let end = end.clone();
let p = Rc::clone(p);
self.run_if_term_is_a_dataset_node(start, move |graph_name| {
eval.eval_closed_in_graph(&p, &start2, &end, &graph_name)
.map(|is_found| is_found.then_some(graph_name))
.transpose()
})
}
}
PropertyPath::NegatedPropertySet(ps) => {
let ps = Rc::clone(ps);
Box::new(
self.dataset
.encoded_quads_for_pattern(Some(start), None, Some(end), None)
.filter_map(move |t| match t {
Ok(t) => {
if ps.iter().any(|p| *p == t.predicate) {
None
} else {
Some(Ok(t.graph_name))
}
}
Err(e) => Some(Err(e)),
}),
)
}
}
}
fn eval_from_in_graph(
&self,
path: &PropertyPath,
start: &EncodedTerm,
graph_name: &EncodedTerm,
) -> Box<dyn Iterator<Item = Result<EncodedTerm, EvaluationError>>> {
match path {
PropertyPath::Path(p) => Box::new(
self.dataset
.encoded_quads_for_pattern(Some(start), Some(p), None, Some(graph_name))
.map(|t| Ok(t?.object)),
),
PropertyPath::Reverse(p) => self.eval_to_in_graph(p, start, graph_name),
PropertyPath::Sequence(a, b) => {
let eval = self.clone();
let b = Rc::clone(b);
let graph_name2 = graph_name.clone();
Box::new(
self.eval_from_in_graph(a, start, graph_name)
.flat_map_ok(move |middle| {
eval.eval_from_in_graph(&b, &middle, &graph_name2)
}),
)
}
PropertyPath::Alternative(a, b) => Box::new(hash_deduplicate(
self.eval_from_in_graph(a, start, graph_name)
.chain(self.eval_from_in_graph(b, start, graph_name)),
)),
PropertyPath::ZeroOrMore(p) => {
self.run_if_term_is_a_graph_node(start, graph_name, || {
let eval = self.clone();
let p = Rc::clone(p);
let graph_name2 = graph_name.clone();
transitive_closure(Some(Ok(start.clone())), move |e| {
eval.eval_from_in_graph(&p, &e, &graph_name2)
})
})
}
PropertyPath::OneOrMore(p) => {
let eval = self.clone();
let p = Rc::clone(p);
let graph_name2 = graph_name.clone();
Box::new(transitive_closure(
self.eval_from_in_graph(&p, start, graph_name),
move |e| eval.eval_from_in_graph(&p, &e, &graph_name2),
))
}
PropertyPath::ZeroOrOne(p) => {
self.run_if_term_is_a_graph_node(start, graph_name, || {
hash_deduplicate(
once(Ok(start.clone()))
.chain(self.eval_from_in_graph(p, start, graph_name)),
)
})
}
PropertyPath::NegatedPropertySet(ps) => {
let ps = Rc::clone(ps);
Box::new(
self.dataset
.encoded_quads_for_pattern(Some(start), None, None, Some(graph_name))
.filter_map(move |t| match t {
Ok(t) => {
if ps.iter().any(|p| *p == t.predicate) {
None
} else {
Some(Ok(t.object))
}
}
Err(e) => Some(Err(e)),
}),
)
}
}
}
fn eval_from_in_unknown_graph(
&self,
path: &PropertyPath,
start: &EncodedTerm,
) -> Box<dyn Iterator<Item = Result<(EncodedTerm, EncodedTerm), EvaluationError>>> {
match path {
PropertyPath::Path(p) => Box::new(
self.dataset
.encoded_quads_for_pattern(Some(start), Some(p), None, None)
.map(|t| {
let t = t?;
Ok((t.object, t.graph_name))
}),
),
PropertyPath::Reverse(p) => self.eval_to_in_unknown_graph(p, start),
PropertyPath::Sequence(a, b) => {
let eval = self.clone();
let b = Rc::clone(b);
Box::new(self.eval_from_in_unknown_graph(a, start).flat_map_ok(
move |(middle, graph_name)| {
eval.eval_from_in_graph(&b, &middle, &graph_name)
.map(move |end| Ok((end?, graph_name.clone())))
},
))
}
PropertyPath::Alternative(a, b) => Box::new(hash_deduplicate(
self.eval_from_in_unknown_graph(a, start)
.chain(self.eval_from_in_unknown_graph(b, start)),
)),
PropertyPath::ZeroOrMore(p) => {
let start2 = start.clone();
let eval = self.clone();
let p = Rc::clone(p);
self.run_if_term_is_a_dataset_node(start, move |graph_name| {
let eval = eval.clone();
let p = Rc::clone(&p);
let graph_name2 = graph_name.clone();
transitive_closure(Some(Ok(start2.clone())), move |e| {
eval.eval_from_in_graph(&p, &e, &graph_name2)
})
.map(move |e| Ok((e?, graph_name.clone())))
})
}
PropertyPath::OneOrMore(p) => {
let eval = self.clone();
let p = Rc::clone(p);
Box::new(transitive_closure(
self.eval_from_in_unknown_graph(&p, start),
move |(e, graph_name)| {
eval.eval_from_in_graph(&p, &e, &graph_name)
.map(move |e| Ok((e?, graph_name.clone())))
},
))
}
PropertyPath::ZeroOrOne(p) => {
let eval = self.clone();
let start2 = start.clone();
let p = Rc::clone(p);
self.run_if_term_is_a_dataset_node(start, move |graph_name| {
hash_deduplicate(once(Ok(start2.clone())).chain(eval.eval_from_in_graph(
&p,
&start2,
&graph_name,
)))
.map(move |e| Ok((e?, graph_name.clone())))
})
}
PropertyPath::NegatedPropertySet(ps) => {
let ps = Rc::clone(ps);
Box::new(
self.dataset
.encoded_quads_for_pattern(Some(start), None, None, None)
.filter_map(move |t| match t {
Ok(t) => {
if ps.iter().any(|p| *p == t.predicate) {
None
} else {
Some(Ok((t.object, t.graph_name)))
}
}
Err(e) => Some(Err(e)),
}),
)
}
}
}
fn eval_to_in_graph(
&self,
path: &PropertyPath,
end: &EncodedTerm,
graph_name: &EncodedTerm,
) -> Box<dyn Iterator<Item = Result<EncodedTerm, EvaluationError>>> {
match path {
PropertyPath::Path(p) => Box::new(
self.dataset
.encoded_quads_for_pattern(None, Some(p), Some(end), Some(graph_name))
.map(|t| Ok(t?.subject)),
),
PropertyPath::Reverse(p) => self.eval_from_in_graph(p, end, graph_name),
PropertyPath::Sequence(a, b) => {
let eval = self.clone();
let a = Rc::clone(a);
let graph_name2 = graph_name.clone();
Box::new(
self.eval_to_in_graph(b, end, graph_name)
.flat_map_ok(move |middle| {
eval.eval_to_in_graph(&a, &middle, &graph_name2)
}),
)
}
PropertyPath::Alternative(a, b) => Box::new(hash_deduplicate(
self.eval_to_in_graph(a, end, graph_name)
.chain(self.eval_to_in_graph(b, end, graph_name)),
)),
PropertyPath::ZeroOrMore(p) => {
self.run_if_term_is_a_graph_node(end, graph_name, || {
let eval = self.clone();
let p = Rc::clone(p);
let graph_name2 = graph_name.clone();
transitive_closure(Some(Ok(end.clone())), move |e| {
eval.eval_to_in_graph(&p, &e, &graph_name2)
})
})
}
PropertyPath::OneOrMore(p) => {
let eval = self.clone();
let p = Rc::clone(p);
let graph_name2 = graph_name.clone();
Box::new(transitive_closure(
self.eval_to_in_graph(&p, end, graph_name),
move |e| eval.eval_to_in_graph(&p, &e, &graph_name2),
))
}
PropertyPath::ZeroOrOne(p) => self.run_if_term_is_a_graph_node(end, graph_name, || {
hash_deduplicate(
once(Ok(end.clone())).chain(self.eval_to_in_graph(p, end, graph_name)),
)
}),
PropertyPath::NegatedPropertySet(ps) => {
let ps = Rc::clone(ps);
Box::new(
self.dataset
.encoded_quads_for_pattern(None, None, Some(end), Some(graph_name))
.filter_map(move |t| match t {
Ok(t) => {
if ps.iter().any(|p| *p == t.predicate) {
None
} else {
Some(Ok(t.subject))
}
}
Err(e) => Some(Err(e)),
}),
)
}
}
}
fn eval_to_in_unknown_graph(
&self,
path: &PropertyPath,
end: &EncodedTerm,
) -> Box<dyn Iterator<Item = Result<(EncodedTerm, EncodedTerm), EvaluationError>>> {
match path {
PropertyPath::Path(p) => Box::new(
self.dataset
.encoded_quads_for_pattern(None, Some(p), Some(end), None)
.map(|t| {
let t = t?;
Ok((t.subject, t.graph_name))
}),
),
PropertyPath::Reverse(p) => self.eval_from_in_unknown_graph(p, end),
PropertyPath::Sequence(a, b) => {
let eval = self.clone();
let a = Rc::clone(a);
Box::new(self.eval_to_in_unknown_graph(b, end).flat_map_ok(
move |(middle, graph_name)| {
eval.eval_to_in_graph(&a, &middle, &graph_name)
.map(move |start| Ok((start?, graph_name.clone())))
},
))
}
PropertyPath::Alternative(a, b) => Box::new(hash_deduplicate(
self.eval_to_in_unknown_graph(a, end)
.chain(self.eval_to_in_unknown_graph(b, end)),
)),
PropertyPath::ZeroOrMore(p) => {
let end2 = end.clone();
let eval = self.clone();
let p = Rc::clone(p);
self.run_if_term_is_a_dataset_node(end, move |graph_name| {
let eval = eval.clone();
let p = Rc::clone(&p);
let graph_name2 = graph_name.clone();
transitive_closure(Some(Ok(end2.clone())), move |e| {
eval.eval_to_in_graph(&p, &e, &graph_name2)
})
.map(move |e| Ok((e?, graph_name.clone())))
})
}
PropertyPath::OneOrMore(p) => {
let eval = self.clone();
let p = Rc::clone(p);
Box::new(transitive_closure(
self.eval_to_in_unknown_graph(&p, end),
move |(e, graph_name)| {
eval.eval_to_in_graph(&p, &e, &graph_name)
.map(move |e| Ok((e?, graph_name.clone())))
},
))
}
PropertyPath::ZeroOrOne(p) => {
let eval = self.clone();
let end2 = end.clone();
let p = Rc::clone(p);
self.run_if_term_is_a_dataset_node(end, move |graph_name| {
hash_deduplicate(once(Ok(end2.clone())).chain(eval.eval_to_in_graph(
&p,
&end2,
&graph_name,
)))
.map(move |e| Ok((e?, graph_name.clone())))
})
}
PropertyPath::NegatedPropertySet(ps) => {
let ps = Rc::clone(ps);
Box::new(
self.dataset
.encoded_quads_for_pattern(None, None, Some(end), None)
.filter_map(move |t| match t {
Ok(t) => {
if ps.iter().any(|p| *p == t.predicate) {
None
} else {
Some(Ok((t.subject, t.graph_name)))
}
}
Err(e) => Some(Err(e)),
}),
)
}
}
}
fn eval_open_in_graph(
&self,
path: &PropertyPath,
graph_name: &EncodedTerm,
) -> Box<dyn Iterator<Item = Result<(EncodedTerm, EncodedTerm), EvaluationError>>> {
match path {
PropertyPath::Path(p) => Box::new(
self.dataset
.encoded_quads_for_pattern(None, Some(p), None, Some(graph_name))
.map(|t| t.map(|t| (t.subject, t.object))),
),
PropertyPath::Reverse(p) => Box::new(
self.eval_open_in_graph(p, graph_name)
.map(|t| t.map(|(s, o)| (o, s))),
),
PropertyPath::Sequence(a, b) => {
let eval = self.clone();
let b = Rc::clone(b);
let graph_name2 = graph_name.clone();
Box::new(self.eval_open_in_graph(a, graph_name).flat_map_ok(
move |(start, middle)| {
eval.eval_from_in_graph(&b, &middle, &graph_name2)
.map(move |end| Ok((start.clone(), end?)))
},
))
}
PropertyPath::Alternative(a, b) => Box::new(hash_deduplicate(
self.eval_open_in_graph(a, graph_name)
.chain(self.eval_open_in_graph(b, graph_name)),
)),
PropertyPath::ZeroOrMore(p) => {
let eval = self.clone();
let p = Rc::clone(p);
let graph_name2 = graph_name.clone();
Box::new(transitive_closure(
self.get_subject_or_object_identity_pairs_in_graph(graph_name),
move |(start, middle)| {
eval.eval_from_in_graph(&p, &middle, &graph_name2)
.map(move |end| Ok((start.clone(), end?)))
},
))
}
PropertyPath::OneOrMore(p) => {
let eval = self.clone();
let p = Rc::clone(p);
let graph_name2 = graph_name.clone();
Box::new(transitive_closure(
self.eval_open_in_graph(&p, graph_name),
move |(start, middle)| {
eval.eval_from_in_graph(&p, &middle, &graph_name2)
.map(move |end| Ok((start.clone(), end?)))
},
))
}
PropertyPath::ZeroOrOne(p) => Box::new(hash_deduplicate(
self.get_subject_or_object_identity_pairs_in_graph(graph_name)
.chain(self.eval_open_in_graph(p, graph_name)),
)),
PropertyPath::NegatedPropertySet(ps) => {
let ps = Rc::clone(ps);
Box::new(
self.dataset
.encoded_quads_for_pattern(None, None, None, Some(graph_name))
.filter_map(move |t| match t {
Ok(t) => {
if ps.iter().any(|p| *p == t.predicate) {
None
} else {
Some(Ok((t.subject, t.object)))
}
}
Err(e) => Some(Err(e)),
}),
)
}
}
}
fn eval_open_in_unknown_graph(
&self,
path: &PropertyPath,
) -> Box<dyn Iterator<Item = Result<(EncodedTerm, EncodedTerm, EncodedTerm), EvaluationError>>>
{
match path {
PropertyPath::Path(p) => Box::new(
self.dataset
.encoded_quads_for_pattern(None, Some(p), None, None)
.map(|t| t.map(|t| (t.subject, t.object, t.graph_name))),
),
PropertyPath::Reverse(p) => Box::new(
self.eval_open_in_unknown_graph(p)
.map(|t| t.map(|(s, o, g)| (o, s, g))),
),
PropertyPath::Sequence(a, b) => {
let eval = self.clone();
let b = Rc::clone(b);
Box::new(self.eval_open_in_unknown_graph(a).flat_map_ok(
move |(start, middle, graph_name)| {
eval.eval_from_in_graph(&b, &middle, &graph_name)
.map(move |end| Ok((start.clone(), end?, graph_name.clone())))
},
))
}
PropertyPath::Alternative(a, b) => Box::new(hash_deduplicate(
self.eval_open_in_unknown_graph(a)
.chain(self.eval_open_in_unknown_graph(b)),
)),
PropertyPath::ZeroOrMore(p) => {
let eval = self.clone();
let p = Rc::clone(p);
Box::new(transitive_closure(
self.get_subject_or_object_identity_pairs_in_dataset(),
move |(start, middle, graph_name)| {
eval.eval_from_in_graph(&p, &middle, &graph_name)
.map(move |end| Ok((start.clone(), end?, graph_name.clone())))
},
))
}
PropertyPath::OneOrMore(p) => {
let eval = self.clone();
let p = Rc::clone(p);
Box::new(transitive_closure(
self.eval_open_in_unknown_graph(&p),
move |(start, middle, graph_name)| {
eval.eval_from_in_graph(&p, &middle, &graph_name)
.map(move |end| Ok((start.clone(), end?, graph_name.clone())))
},
))
}
PropertyPath::ZeroOrOne(p) => Box::new(hash_deduplicate(
self.get_subject_or_object_identity_pairs_in_dataset()
.chain(self.eval_open_in_unknown_graph(p)),
)),
PropertyPath::NegatedPropertySet(ps) => {
let ps = Rc::clone(ps);
Box::new(
self.dataset
.encoded_quads_for_pattern(None, None, None, None)
.filter_map(move |t| match t {
Ok(t) => {
if ps.iter().any(|p| *p == t.predicate) {
None
} else {
Some(Ok((t.subject, t.object, t.graph_name)))
}
}
Err(e) => Some(Err(e)),
}),
)
}
}
}
fn get_subject_or_object_identity_pairs_in_graph(
&self,
graph_name: &EncodedTerm,
) -> impl Iterator<Item = Result<(EncodedTerm, EncodedTerm), EvaluationError>> {
self.dataset
.encoded_quads_for_pattern(None, None, None, Some(graph_name))
.flat_map_ok(|t| {
[
Ok((t.subject.clone(), t.subject)),
Ok((t.object.clone(), t.object)),
]
})
}
fn get_subject_or_object_identity_pairs_in_dataset(
&self,
) -> impl Iterator<Item = Result<(EncodedTerm, EncodedTerm, EncodedTerm), EvaluationError>>
{
self.dataset
.encoded_quads_for_pattern(None, None, None, None)
.flat_map_ok(|t| {
[
Ok((t.subject.clone(), t.subject, t.graph_name.clone())),
Ok((t.object.clone(), t.object, t.graph_name)),
]
})
}
fn run_if_term_is_a_graph_node<
T: 'static,
I: Iterator<Item = Result<T, EvaluationError>> + 'static,
>(
&self,
term: &EncodedTerm,
graph_name: &EncodedTerm,
f: impl FnOnce() -> I,
) -> Box<dyn Iterator<Item = Result<T, EvaluationError>>> {
match self.is_subject_or_object_in_graph(term, graph_name) {
Ok(true) => Box::new(f()),
Ok(false) => {
Box::new(empty()) }
Err(error) => Box::new(once(Err(error))),
}
}
fn is_subject_or_object_in_graph(
&self,
term: &EncodedTerm,
graph_name: &EncodedTerm,
) -> Result<bool, EvaluationError> {
Ok(self
.dataset
.encoded_quads_for_pattern(Some(term), None, None, Some(graph_name))
.next()
.transpose()?
.is_some()
|| self
.dataset
.encoded_quads_for_pattern(None, None, Some(term), Some(graph_name))
.next()
.transpose()?
.is_some())
}
fn run_if_term_is_a_dataset_node<
T: 'static,
I: IntoIterator<Item = Result<T, EvaluationError>> + 'static,
>(
&self,
term: &EncodedTerm,
f: impl FnMut(EncodedTerm) -> I + 'static,
) -> Box<dyn Iterator<Item = Result<T, EvaluationError>>> {
match self
.find_graphs_where_the_node_is_in(term)
.collect::<Result<FxHashSet<_>, _>>()
{
Ok(graph_names) => Box::new(graph_names.into_iter().flat_map(f)),
Err(error) => Box::new(once(Err(error))),
}
}
fn find_graphs_where_the_node_is_in(
&self,
term: &EncodedTerm,
) -> impl Iterator<Item = Result<EncodedTerm, EvaluationError>> {
self.dataset
.encoded_quads_for_pattern(Some(term), None, None, None)
.chain(
self.dataset
.encoded_quads_for_pattern(None, None, Some(term), None),
)
.map(|q| Ok(q?.graph_name))
}
}
struct CartesianProductJoinIterator {
probe_iter: Peekable<EncodedTuplesIterator>,
built: Vec<EncodedTuple>,
buffered_results: Vec<Result<EncodedTuple, EvaluationError>>,
}
impl Iterator for CartesianProductJoinIterator {
type Item = Result<EncodedTuple, EvaluationError>;
fn next(&mut self) -> Option<Self::Item> {
loop {
if let Some(result) = self.buffered_results.pop() {
return Some(result);
}
let probe_tuple = match self.probe_iter.next()? {
Ok(probe_tuple) => probe_tuple,
Err(error) => return Some(Err(error)),
};
for built_tuple in &self.built {
if let Some(result_tuple) = probe_tuple.combine_with(built_tuple) {
self.buffered_results.push(Ok(result_tuple))
}
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let (min, max) = self.probe_iter.size_hint();
(
min.saturating_mul(self.built.len()),
max.map(|v| v.saturating_mul(self.built.len())),
)
}
}
struct HashJoinIterator {
probe_iter: Peekable<EncodedTuplesIterator>,
built: EncodedTupleSet,
buffered_results: Vec<Result<EncodedTuple, EvaluationError>>,
}
impl Iterator for HashJoinIterator {
type Item = Result<EncodedTuple, EvaluationError>;
fn next(&mut self) -> Option<Self::Item> {
loop {
if let Some(result) = self.buffered_results.pop() {
return Some(result);
}
let probe_tuple = match self.probe_iter.next()? {
Ok(probe_tuple) => probe_tuple,
Err(error) => return Some(Err(error)),
};
self.buffered_results.extend(
self.built
.get(&probe_tuple)
.iter()
.filter_map(|built_tuple| probe_tuple.combine_with(built_tuple).map(Ok)),
)
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
(
0,
self.probe_iter
.size_hint()
.1
.map(|v| v.saturating_mul(self.built.len())),
)
}
}
struct HashLeftJoinIterator {
left_iter: EncodedTuplesIterator,
right: EncodedTupleSet,
buffered_results: Vec<Result<EncodedTuple, EvaluationError>>,
expression: Rc<dyn Fn(&EncodedTuple) -> Option<EncodedTerm>>,
}
impl Iterator for HashLeftJoinIterator {
type Item = Result<EncodedTuple, EvaluationError>;
fn next(&mut self) -> Option<Self::Item> {
loop {
if let Some(result) = self.buffered_results.pop() {
return Some(result);
}
let left_tuple = match self.left_iter.next()? {
Ok(left_tuple) => left_tuple,
Err(error) => return Some(Err(error)),
};
self.buffered_results.extend(
self.right
.get(&left_tuple)
.iter()
.filter_map(|right_tuple| left_tuple.combine_with(right_tuple))
.filter(|tuple| {
(self.expression)(tuple)
.and_then(|term| to_bool(&term))
.unwrap_or(false)
})
.map(Ok),
);
if self.buffered_results.is_empty() {
return Some(Ok(left_tuple));
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
(
0,
self.left_iter
.size_hint()
.1
.map(|v| v.saturating_mul(self.right.len())),
)
}
}
struct ForLoopLeftJoinIterator {
right_evaluator: Rc<dyn Fn(EncodedTuple) -> EncodedTuplesIterator>,
left_iter: EncodedTuplesIterator,
current_right: EncodedTuplesIterator,
}
impl Iterator for ForLoopLeftJoinIterator {
type Item = Result<EncodedTuple, EvaluationError>;
fn next(&mut self) -> Option<Self::Item> {
if let Some(tuple) = self.current_right.next() {
return Some(tuple);
}
let left_tuple = match self.left_iter.next()? {
Ok(left_tuple) => left_tuple,
Err(error) => return Some(Err(error)),
};
self.current_right = (self.right_evaluator)(left_tuple.clone());
if let Some(right_tuple) = self.current_right.next() {
Some(right_tuple)
} else {
Some(Ok(left_tuple))
}
}
}
struct UnionIterator {
plans: Vec<Rc<dyn Fn(EncodedTuple) -> EncodedTuplesIterator>>,
input: EncodedTuple,
current_iterator: EncodedTuplesIterator,
current_plan: usize,
}
impl Iterator for UnionIterator {
type Item = Result<EncodedTuple, EvaluationError>;
fn next(&mut self) -> Option<Self::Item> {
loop {
if let Some(tuple) = self.current_iterator.next() {
return Some(tuple);
}
if self.current_plan >= self.plans.len() {
return None;
}
self.current_iterator = self.plans[self.current_plan](self.input.clone());
self.current_plan += 1;
}
}
}
struct ConsecutiveDeduplication {
inner: EncodedTuplesIterator,
current: Option<EncodedTuple>,
}
impl Iterator for ConsecutiveDeduplication {
type Item = Result<EncodedTuple, EvaluationError>;
fn next(&mut self) -> Option<Self::Item> {
loop {
if let Some(next) = self.inner.next() {
match next {
Ok(next) => match self.current.take() {
Some(current) if current != next => {
self.current = Some(next);
return Some(Ok(current));
}
_ => {
self.current = Some(next);
}
},
Err(error) => return Some(Err(error)), }
} else {
return self.current.take().map(Ok);
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let (min, max) = self.inner.size_hint();
((min != 0).into(), max)
}
}
struct ConstructIterator {
eval: SimpleEvaluator,
iter: EncodedTuplesIterator,
template: Vec<TripleTemplate>,
buffered_results: Vec<Result<Triple, EvaluationError>>,
already_emitted_results: FxHashSet<EncodedTriple>,
bnodes: Vec<EncodedTerm>,
}
impl Iterator for ConstructIterator {
type Item = Result<Triple, EvaluationError>;
fn next(&mut self) -> Option<Self::Item> {
loop {
if let Some(result) = self.buffered_results.pop() {
return Some(result);
}
{
let tuple = match self.iter.next()? {
Ok(tuple) => tuple,
Err(error) => return Some(Err(error)),
};
for template in &self.template {
if let (Some(subject), Some(predicate), Some(object)) = (
get_triple_template_value(&template.subject, &tuple, &mut self.bnodes),
get_triple_template_value(&template.predicate, &tuple, &mut self.bnodes),
get_triple_template_value(&template.object, &tuple, &mut self.bnodes),
) {
let triple = EncodedTriple {
subject,
predicate,
object,
};
let new_triple = triple.subject.is_blank_node()
|| triple.subject.is_triple()
|| triple.object.is_blank_node()
|| triple.object.is_triple()
|| self.already_emitted_results.insert(triple.clone());
if new_triple {
self.buffered_results
.push(self.eval.dataset.decode_triple(&triple).map_err(Into::into));
if self.already_emitted_results.len() > 1024 * 1024 {
self.already_emitted_results.clear();
}
}
}
}
self.bnodes.clear(); }
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let (min, max) = self.iter.size_hint();
(
min.saturating_mul(self.template.len()),
max.map(|v| v.saturating_mul(self.template.len())),
)
}
}
pub struct TripleTemplate {
pub subject: TripleTemplateValue,
pub predicate: TripleTemplateValue,
pub object: TripleTemplateValue,
}
pub enum TripleTemplateValue {
Constant(EncodedTerm),
BlankNode(usize),
Variable(usize),
Triple(Box<TripleTemplate>),
}
fn get_triple_template_value<'a>(
selector: &'a TripleTemplateValue,
tuple: &'a EncodedTuple,
bnodes: &'a mut Vec<EncodedTerm>,
) -> Option<EncodedTerm> {
match selector {
TripleTemplateValue::Constant(term) => Some(term.clone()),
TripleTemplateValue::Variable(v) => tuple.get(*v).cloned(),
TripleTemplateValue::BlankNode(bnode) => {
if *bnode >= bnodes.len() {
bnodes.resize_with(*bnode + 1, new_bnode)
}
Some(bnodes[*bnode].clone())
}
TripleTemplateValue::Triple(triple) => Some(
EncodedTriple {
subject: get_triple_template_value(&triple.subject, tuple, bnodes)?,
predicate: get_triple_template_value(&triple.predicate, tuple, bnodes)?,
object: get_triple_template_value(&triple.object, tuple, bnodes)?,
}
.into(),
),
}
}
fn new_bnode() -> EncodedTerm {
EncodedTerm::NumericalBlankNode { id: random() }
}
struct DescribeIterator {
eval: SimpleEvaluator,
tuples_to_describe: EncodedTuplesIterator,
nodes_described: FxHashSet<EncodedTerm>,
nodes_to_describe: Vec<EncodedTerm>,
quads: Box<dyn Iterator<Item = Result<EncodedQuad, EvaluationError>>>,
}
impl Iterator for DescribeIterator {
type Item = Result<Triple, EvaluationError>;
fn next(&mut self) -> Option<Self::Item> {
loop {
if let Some(quad) = self.quads.next() {
let quad = match quad {
Ok(quad) => quad,
Err(error) => return Some(Err(error)),
};
if quad.object.is_blank_node() && self.nodes_described.insert(quad.object.clone()) {
self.nodes_to_describe.push(quad.object.clone());
}
return Some(
self.eval
.dataset
.decode_quad(&quad)
.map(Into::into)
.map_err(Into::into),
);
}
if let Some(node_to_describe) = self.nodes_to_describe.pop() {
self.quads = self.eval.dataset.encoded_quads_for_pattern(
Some(&node_to_describe),
None,
None,
Some(&EncodedTerm::DefaultGraph),
);
} else {
let tuple = match self.tuples_to_describe.next()? {
Ok(tuple) => tuple,
Err(error) => return Some(Err(error)),
};
for node in tuple.into_iter().flatten() {
if self.nodes_described.insert(node.clone()) {
self.nodes_to_describe.push(node);
}
}
}
}
}
}
struct ZipLongest<T1, T2, I1: Iterator<Item = T1>, I2: Iterator<Item = T2>> {
a: I1,
b: I2,
}
impl<T1, T2, I1: Iterator<Item = T1>, I2: Iterator<Item = T2>> ZipLongest<T1, T2, I1, I2> {
fn new(a: I1, b: I2) -> Self {
Self { a, b }
}
}
impl<T1, T2, I1: Iterator<Item = T1>, I2: Iterator<Item = T2>> Iterator
for ZipLongest<T1, T2, I1, I2>
{
type Item = (Option<T1>, Option<T2>);
fn next(&mut self) -> Option<Self::Item> {
match (self.a.next(), self.b.next()) {
(None, None) => None,
r => Some(r),
}
}
}
fn transitive_closure<T: Clone + Eq + Hash, NI: Iterator<Item = Result<T, EvaluationError>>>(
start: impl IntoIterator<Item = Result<T, EvaluationError>>,
mut next: impl FnMut(T) -> NI,
) -> impl Iterator<Item = Result<T, EvaluationError>> {
let mut errors = Vec::new();
let mut todo = start
.into_iter()
.filter_map(|e| match e {
Ok(e) => Some(e),
Err(e) => {
errors.push(e);
None
}
})
.collect::<Vec<_>>();
let mut all = todo.iter().cloned().collect::<FxHashSet<_>>();
while let Some(e) = todo.pop() {
for e in next(e) {
match e {
Ok(e) => {
if all.insert(e.clone()) {
todo.push(e)
}
}
Err(e) => errors.push(e),
}
}
}
errors.into_iter().map(Err).chain(all.into_iter().map(Ok))
}
fn look_in_transitive_closure<
T: Clone + Eq + Hash,
NI: Iterator<Item = Result<T, EvaluationError>>,
>(
start: impl IntoIterator<Item = Result<T, EvaluationError>>,
mut next: impl FnMut(T) -> NI,
target: &T,
) -> Result<bool, EvaluationError> {
let mut todo = start.into_iter().collect::<Result<Vec<_>, _>>()?;
let mut all = todo.iter().cloned().collect::<FxHashSet<_>>();
while let Some(e) = todo.pop() {
if e == *target {
return Ok(true);
}
for e in next(e) {
let e = e?;
if all.insert(e.clone()) {
todo.push(e);
}
}
}
Ok(false)
}
fn hash_deduplicate<T: Eq + Hash + Clone>(
iter: impl Iterator<Item = Result<T, EvaluationError>>,
) -> impl Iterator<Item = Result<T, EvaluationError>> {
let mut already_seen = FxHashSet::with_capacity_and_hasher(iter.size_hint().0, FxBuildHasher);
iter.filter(move |e| {
if let Ok(e) = e {
if already_seen.contains(e) {
false
} else {
already_seen.insert(e.clone());
true
}
} else {
true
}
})
}
trait ResultIterator<T>: Iterator<Item = Result<T, EvaluationError>> + Sized {
fn flat_map_ok<O, F: FnMut(T) -> U, U: IntoIterator<Item = Result<O, EvaluationError>>>(
self,
f: F,
) -> FlatMapOk<T, O, Self, F, U>;
}
impl<T, I: Iterator<Item = Result<T, EvaluationError>> + Sized> ResultIterator<T> for I {
fn flat_map_ok<O, F: FnMut(T) -> U, U: IntoIterator<Item = Result<O, EvaluationError>>>(
self,
f: F,
) -> FlatMapOk<T, O, Self, F, U> {
FlatMapOk {
inner: self,
f,
current: None,
}
}
}
struct FlatMapOk<
T,
O,
I: Iterator<Item = Result<T, EvaluationError>>,
F: FnMut(T) -> U,
U: IntoIterator<Item = Result<O, EvaluationError>>,
> {
inner: I,
f: F,
current: Option<U::IntoIter>,
}
impl<
T,
O,
I: Iterator<Item = Result<T, EvaluationError>>,
F: FnMut(T) -> U,
U: IntoIterator<Item = Result<O, EvaluationError>>,
> Iterator for FlatMapOk<T, O, I, F, U>
{
type Item = Result<O, EvaluationError>;
fn next(&mut self) -> Option<Self::Item> {
loop {
if let Some(current) = &mut self.current {
if let Some(next) = current.next() {
return Some(next);
}
}
self.current = None;
match self.inner.next()? {
Ok(e) => self.current = Some((self.f)(e).into_iter()),
Err(error) => return Some(Err(error)),
}
}
}
}
trait Accumulator {
fn add(&mut self, element: Option<EncodedTerm>);
fn state(&self) -> Option<EncodedTerm>;
}
struct Deduplicate {
seen: FxHashSet<Option<EncodedTerm>>,
inner: Box<dyn Accumulator>,
}
impl Deduplicate {
fn new(inner: Box<dyn Accumulator>) -> Self {
Self {
seen: FxHashSet::default(),
inner,
}
}
}
impl Accumulator for Deduplicate {
fn add(&mut self, element: Option<EncodedTerm>) {
if self.seen.insert(element.clone()) {
self.inner.add(element)
}
}
fn state(&self) -> Option<EncodedTerm> {
self.inner.state()
}
}
#[derive(Default, Debug)]
struct CountAccumulator {
count: i64,
}
impl Accumulator for CountAccumulator {
fn add(&mut self, _element: Option<EncodedTerm>) {
self.count += 1;
}
fn state(&self) -> Option<EncodedTerm> {
Some(self.count.into())
}
}
struct SumAccumulator {
sum: Option<EncodedTerm>,
}
impl Default for SumAccumulator {
fn default() -> Self {
Self {
sum: Some(0.into()),
}
}
}
impl Accumulator for SumAccumulator {
fn add(&mut self, element: Option<EncodedTerm>) {
if let Some(sum) = &self.sum {
if let Some(operands) = element.and_then(|e| NumericBinaryOperands::new(sum.clone(), e))
{
self.sum = match operands {
NumericBinaryOperands::Float(v1, v2) => Some((v1 + v2).into()),
NumericBinaryOperands::Double(v1, v2) => Some((v1 + v2).into()),
NumericBinaryOperands::Integer(v1, v2) => v1.checked_add(v2).map(Into::into),
NumericBinaryOperands::Decimal(v1, v2) => v1.checked_add(v2).map(Into::into),
NumericBinaryOperands::Duration(v1, v2) => v1.checked_add(v2).map(Into::into),
NumericBinaryOperands::YearMonthDuration(v1, v2) => {
v1.checked_add(v2).map(Into::into)
}
NumericBinaryOperands::DayTimeDuration(v1, v2) => {
v1.checked_add(v2).map(Into::into)
}
_ => None,
};
} else {
self.sum = None;
}
}
}
fn state(&self) -> Option<EncodedTerm> {
self.sum.clone()
}
}
#[derive(Default)]
struct AvgAccumulator {
sum: SumAccumulator,
count: i64,
}
impl Accumulator for AvgAccumulator {
fn add(&mut self, element: Option<EncodedTerm>) {
self.sum.add(element);
self.count += 1;
}
fn state(&self) -> Option<EncodedTerm> {
let sum = self.sum.state()?;
if self.count == 0 {
Some(0.into())
} else {
let count = Integer::from(self.count);
match sum {
EncodedTerm::FloatLiteral(sum) => Some((sum / Float::from(count)).into()),
EncodedTerm::DoubleLiteral(sum) => Some((sum / Double::from(count)).into()),
EncodedTerm::IntegerLiteral(sum) => {
Some(Decimal::from(sum).checked_div(count)?.into())
}
EncodedTerm::DecimalLiteral(sum) => Some(sum.checked_div(count)?.into()),
_ => None,
}
}
}
}
#[allow(clippy::option_option)]
struct MinAccumulator {
dataset: Rc<DatasetView>,
min: Option<Option<EncodedTerm>>,
}
impl MinAccumulator {
fn new(dataset: Rc<DatasetView>) -> Self {
Self { dataset, min: None }
}
}
impl Accumulator for MinAccumulator {
fn add(&mut self, element: Option<EncodedTerm>) {
if let Some(min) = &self.min {
if cmp_terms(&self.dataset, element.as_ref(), min.as_ref()) == Ordering::Less {
self.min = Some(element)
}
} else {
self.min = Some(element)
}
}
fn state(&self) -> Option<EncodedTerm> {
self.min.clone().and_then(|v| v)
}
}
#[allow(clippy::option_option)]
struct MaxAccumulator {
dataset: Rc<DatasetView>,
max: Option<Option<EncodedTerm>>,
}
impl MaxAccumulator {
fn new(dataset: Rc<DatasetView>) -> Self {
Self { dataset, max: None }
}
}
impl Accumulator for MaxAccumulator {
fn add(&mut self, element: Option<EncodedTerm>) {
if let Some(max) = &self.max {
if cmp_terms(&self.dataset, element.as_ref(), max.as_ref()) == Ordering::Greater {
self.max = Some(element)
}
} else {
self.max = Some(element)
}
}
fn state(&self) -> Option<EncodedTerm> {
self.max.clone().and_then(|v| v)
}
}
#[derive(Default)]
struct SampleAccumulator {
value: Option<EncodedTerm>,
}
impl Accumulator for SampleAccumulator {
fn add(&mut self, element: Option<EncodedTerm>) {
if element.is_some() {
self.value = element
}
}
fn state(&self) -> Option<EncodedTerm> {
self.value.clone()
}
}
#[allow(clippy::option_option)]
struct GroupConcatAccumulator {
dataset: Rc<DatasetView>,
concat: Option<String>,
language: Option<Option<SmallStringOrId>>,
separator: Rc<str>,
}
impl GroupConcatAccumulator {
fn new(dataset: Rc<DatasetView>, separator: Rc<str>) -> Self {
Self {
dataset,
concat: Some(String::new()),
language: None,
separator,
}
}
}
impl Accumulator for GroupConcatAccumulator {
fn add(&mut self, element: Option<EncodedTerm>) {
if let Some(concat) = self.concat.as_mut() {
if let Some(element) = element {
if let Some((value, e_language)) = to_string_and_language(&self.dataset, &element) {
if let Some(lang) = self.language {
if lang != e_language {
self.language = Some(None)
}
concat.push_str(&self.separator);
} else {
self.language = Some(e_language)
}
concat.push_str(&value);
}
}
}
}
fn state(&self) -> Option<EncodedTerm> {
self.concat
.as_ref()
.map(|result| build_plain_literal(&self.dataset, result, self.language.and_then(|v| v)))
}
}
struct FailingAccumulator;
impl Accumulator for FailingAccumulator {
fn add(&mut self, _: Option<EncodedTerm>) {}
fn state(&self) -> Option<EncodedTerm> {
None
}
}
fn encode_variable(variables: &mut Vec<Variable>, variable: &Variable) -> usize {
if let Some(key) = slice_key(variables, variable) {
key
} else {
variables.push(variable.clone());
variables.len() - 1
}
}
fn bnode_key(blank_nodes: &mut Vec<BlankNode>, blank_node: &BlankNode) -> usize {
if let Some(key) = slice_key(blank_nodes, blank_node) {
key
} else {
blank_nodes.push(blank_node.clone());
blank_nodes.len() - 1
}
}
fn slice_key<T: Eq>(slice: &[T], element: &T) -> Option<usize> {
for (i, item) in slice.iter().enumerate() {
if item == element {
return Some(i);
}
}
None
}
fn generate_uuid(buffer: &mut String) {
let mut uuid = random::<u128>().to_le_bytes();
uuid[6] = (uuid[6] & 0x0F) | 0x40;
uuid[8] = (uuid[8] & 0x3F) | 0x80;
write_hexa_bytes(&uuid[0..4], buffer);
buffer.push('-');
write_hexa_bytes(&uuid[4..6], buffer);
buffer.push('-');
write_hexa_bytes(&uuid[6..8], buffer);
buffer.push('-');
write_hexa_bytes(&uuid[8..10], buffer);
buffer.push('-');
write_hexa_bytes(&uuid[10..16], buffer);
}
fn write_hexa_bytes(bytes: &[u8], buffer: &mut String) {
for b in bytes {
let high = b / 16;
buffer.push(char::from(if high < 10 {
b'0' + high
} else {
b'a' + (high - 10)
}));
let low = b % 16;
buffer.push(char::from(if low < 10 {
b'0' + low
} else {
b'a' + (low - 10)
}));
}
}
#[derive(Eq, PartialEq, Clone, Copy)]
enum SmallStringOrId {
Small(SmallString),
Big(StrHash),
}
impl From<SmallString> for SmallStringOrId {
fn from(value: SmallString) -> Self {
Self::Small(value)
}
}
impl From<StrHash> for SmallStringOrId {
fn from(value: StrHash) -> Self {
Self::Big(value)
}
}
pub enum ComparatorFunction {
Asc(Rc<dyn Fn(&EncodedTuple) -> Option<EncodedTerm>>),
Desc(Rc<dyn Fn(&EncodedTuple) -> Option<EncodedTerm>>),
}
struct EncodedTupleSet {
key: Vec<usize>,
map: FxHashMap<u64, Vec<EncodedTuple>>,
len: usize,
}
impl EncodedTupleSet {
fn new(key: Vec<usize>) -> Self {
Self {
key,
map: FxHashMap::default(),
len: 0,
}
}
fn insert(&mut self, tuple: EncodedTuple) {
self.map
.entry(self.tuple_key(&tuple))
.or_default()
.push(tuple);
self.len += 1;
}
fn get(&self, tuple: &EncodedTuple) -> &[EncodedTuple] {
self.map.get(&self.tuple_key(tuple)).map_or(&[], |v| v)
}
fn tuple_key(&self, tuple: &EncodedTuple) -> u64 {
let mut hasher = DefaultHasher::default();
for v in &self.key {
if let Some(val) = tuple.get(*v) {
val.hash(&mut hasher);
}
}
hasher.finish()
}
fn len(&self) -> usize {
self.len
}
fn is_empty(&self) -> bool {
self.len == 0
}
}
impl Extend<EncodedTuple> for EncodedTupleSet {
fn extend<T: IntoIterator<Item = EncodedTuple>>(&mut self, iter: T) {
let iter = iter.into_iter();
self.map.reserve(iter.size_hint().0);
for tuple in iter {
self.insert(tuple);
}
}
}
struct StatsIterator {
inner: EncodedTuplesIterator,
stats: Rc<EvalNodeWithStats>,
}
impl Iterator for StatsIterator {
type Item = Result<EncodedTuple, EvaluationError>;
fn next(&mut self) -> Option<Self::Item> {
let start = Timer::now();
let result = self.inner.next();
self.stats.exec_duration.set(
self.stats
.exec_duration
.get()
.and_then(|stat| stat.checked_add(start.elapsed()?)),
);
if matches!(result, Some(Ok(_))) {
self.stats.exec_count.set(self.stats.exec_count.get() + 1);
}
result
}
}
pub struct EvalNodeWithStats {
pub label: String,
pub children: Vec<Rc<EvalNodeWithStats>>,
pub exec_count: Cell<usize>,
pub exec_duration: Cell<Option<DayTimeDuration>>,
}
impl EvalNodeWithStats {
pub fn json_node(
&self,
writer: &mut ToWriteJsonWriter<impl io::Write>,
with_stats: bool,
) -> io::Result<()> {
writer.write_event(JsonEvent::StartObject)?;
writer.write_event(JsonEvent::ObjectKey("name".into()))?;
writer.write_event(JsonEvent::String((&self.label).into()))?;
if with_stats {
writer.write_event(JsonEvent::ObjectKey("number of results".into()))?;
writer.write_event(JsonEvent::Number(self.exec_count.get().to_string().into()))?;
if let Some(duration) = self.exec_duration.get() {
writer.write_event(JsonEvent::ObjectKey("duration in seconds".into()))?;
writer.write_event(JsonEvent::Number(duration.as_seconds().to_string().into()))?;
}
}
writer.write_event(JsonEvent::ObjectKey("children".into()))?;
writer.write_event(JsonEvent::StartArray)?;
for child in &self.children {
child.json_node(writer, with_stats)?;
}
writer.write_event(JsonEvent::EndArray)?;
writer.write_event(JsonEvent::EndObject)
}
}
impl fmt::Debug for EvalNodeWithStats {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut obj = f.debug_struct("Node");
obj.field("name", &self.label);
if let Some(exec_duration) = self.exec_duration.get() {
obj.field("number of results", &self.exec_count.get());
obj.field(
"duration in seconds",
&f32::from(Float::from(exec_duration.as_seconds())),
);
}
if !self.children.is_empty() {
obj.field("children", &self.children);
}
obj.finish()
}
}
fn eval_node_label(node: &GraphPattern) -> String {
match node {
GraphPattern::Distinct { .. } => "Distinct(Hash)".to_owned(),
GraphPattern::Extend {
expression,
variable,
..
} => format!(
"Extend({} -> {variable})",
spargebra::algebra::Expression::from(expression)
),
GraphPattern::Filter { expression, .. } => format!(
"Filter({})",
spargebra::algebra::Expression::from(expression)
),
GraphPattern::Group {
variables,
aggregates,
..
} => {
format!(
"Aggregate({})",
format_list(variables.iter().map(ToString::to_string).chain(
aggregates.iter().map(|(v, agg)| format!(
"{} -> {v}",
spargebra::algebra::AggregateExpression::from(agg)
))
))
)
}
GraphPattern::Join { algorithm, .. } => match algorithm {
JoinAlgorithm::HashBuildLeftProbeRight { keys } => format!(
"LeftJoin(HashBuildLeftProbeRight, keys = {})",
format_list(keys)
),
},
GraphPattern::Lateral { right, .. } => {
if let GraphPattern::LeftJoin {
left: nested_left,
expression,
..
} = right.as_ref()
{
if nested_left.is_empty_singleton() {
return format!(
"ForLoopLeftJoin(expression = {})",
spargebra::algebra::Expression::from(expression)
);
}
}
"Lateral".to_owned()
}
GraphPattern::LeftJoin {
algorithm,
expression,
..
} => match algorithm {
LeftJoinAlgorithm::HashBuildRightProbeLeft { keys } => format!(
"LeftJoin(HashBuildRightProbeLeft, keys = {}, expression = {})",
format_list(keys),
spargebra::algebra::Expression::from(expression)
),
},
GraphPattern::Minus { algorithm, .. } => match algorithm {
MinusAlgorithm::HashBuildRightProbeLeft { keys } => format!(
"AntiJoin(HashBuildRightProbeLeft, keys = {})",
format_list(keys)
),
},
GraphPattern::OrderBy { expression, .. } => {
format!(
"Sort({})",
format_list(
expression
.iter()
.map(spargebra::algebra::OrderExpression::from)
)
)
}
GraphPattern::Path {
subject,
path,
object,
graph_name,
} => {
if let Some(graph_name) = graph_name {
format!("Path({subject} {path} {object} {graph_name})")
} else {
format!("Path({subject} {path} {object})")
}
}
GraphPattern::Project { variables, .. } => {
format!("Project({})", format_list(variables))
}
GraphPattern::QuadPattern {
subject,
predicate,
object,
graph_name,
} => {
if let Some(graph_name) = graph_name {
format!("QuadPattern({subject} {predicate} {object} {graph_name})")
} else {
format!("QuadPattern({subject} {predicate} {object})")
}
}
GraphPattern::Reduced { .. } => "Reduced".to_owned(),
GraphPattern::Service { name, silent, .. } => {
if *silent {
format!("Service({name}, Silent)")
} else {
format!("Service({name})")
}
}
GraphPattern::Slice { start, length, .. } => {
if let Some(length) = length {
format!("Slice(start = {start}, length = {length})")
} else {
format!("Slice(start = {start})")
}
}
GraphPattern::Union { .. } => "Union".to_owned(),
GraphPattern::Values { variables, .. } => {
format!("StaticBindings({})", format_list(variables))
}
}
}
fn format_list<T: ToString>(values: impl IntoIterator<Item = T>) -> String {
values
.into_iter()
.map(|v| v.to_string())
.collect::<Vec<_>>()
.join(", ")
}
pub struct Timer {
start: DateTime,
}
impl Timer {
pub fn now() -> Self {
Self {
start: DateTime::now(),
}
}
pub fn elapsed(&self) -> Option<DayTimeDuration> {
DateTime::now().checked_sub(self.start)
}
}
#[cfg(test)]
#[allow(clippy::panic_in_result_fn)]
mod tests {
use super::*;
#[test]
fn uuid() {
let mut buffer = String::default();
generate_uuid(&mut buffer);
assert!(
Regex::new("^[0-9a-f]{8}-[0-9a-f]{4}-4[0-9a-f]{3}-[89ab][0-9a-f]{3}-[0-9a-f]{12}$")
.unwrap()
.is_match(&buffer),
"{buffer} is not a valid UUID"
);
}
}