oxigraph/sparql/
dataset.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
use crate::model::TermRef;
use crate::sparql::algebra::QueryDataset;
use crate::sparql::EvaluationError;
use crate::storage::numeric_encoder::{
    insert_term, EncodedQuad, EncodedTerm, StrHash, StrHashHasher, StrLookup,
};
use crate::storage::{StorageError, StorageReader};
use std::cell::RefCell;
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::hash::BuildHasherDefault;
use std::iter::empty;

pub struct DatasetView {
    reader: StorageReader,
    extra: RefCell<HashMap<StrHash, String, BuildHasherDefault<StrHashHasher>>>,
    dataset: EncodedDatasetSpec,
}

impl DatasetView {
    pub fn new(reader: StorageReader, dataset: &QueryDataset) -> Self {
        let dataset = EncodedDatasetSpec {
            default: dataset
                .default_graph_graphs()
                .map(|graphs| graphs.iter().map(|g| g.as_ref().into()).collect::<Vec<_>>()),
            named: dataset
                .available_named_graphs()
                .map(|graphs| graphs.iter().map(|g| g.as_ref().into()).collect::<Vec<_>>()),
        };
        Self {
            reader,
            extra: RefCell::new(HashMap::default()),
            dataset,
        }
    }

    fn store_encoded_quads_for_pattern(
        &self,
        subject: Option<&EncodedTerm>,
        predicate: Option<&EncodedTerm>,
        object: Option<&EncodedTerm>,
        graph_name: Option<&EncodedTerm>,
    ) -> impl Iterator<Item = Result<EncodedQuad, EvaluationError>> + 'static {
        self.reader
            .quads_for_pattern(subject, predicate, object, graph_name)
            .map(|t| t.map_err(Into::into))
    }

    #[allow(clippy::needless_collect)]
    pub fn encoded_quads_for_pattern(
        &self,
        subject: Option<&EncodedTerm>,
        predicate: Option<&EncodedTerm>,
        object: Option<&EncodedTerm>,
        graph_name: Option<&EncodedTerm>,
    ) -> Box<dyn Iterator<Item = Result<EncodedQuad, EvaluationError>>> {
        if let Some(graph_name) = graph_name {
            if graph_name.is_default_graph() {
                if let Some(default_graph_graphs) = &self.dataset.default {
                    if default_graph_graphs.len() == 1 {
                        // Single graph optimization
                        Box::new(
                            self.store_encoded_quads_for_pattern(
                                subject,
                                predicate,
                                object,
                                Some(&default_graph_graphs[0]),
                            )
                            .map(|quad| {
                                let quad = quad?;
                                Ok(EncodedQuad::new(
                                    quad.subject,
                                    quad.predicate,
                                    quad.object,
                                    EncodedTerm::DefaultGraph,
                                ))
                            }),
                        )
                    } else {
                        let iters = default_graph_graphs
                            .iter()
                            .map(|graph_name| {
                                self.store_encoded_quads_for_pattern(
                                    subject,
                                    predicate,
                                    object,
                                    Some(graph_name),
                                )
                            })
                            .collect::<Vec<_>>();
                        Box::new(iters.into_iter().flatten().map(|quad| {
                            let quad = quad?;
                            Ok(EncodedQuad::new(
                                quad.subject,
                                quad.predicate,
                                quad.object,
                                EncodedTerm::DefaultGraph,
                            ))
                        }))
                    }
                } else {
                    Box::new(
                        self.store_encoded_quads_for_pattern(subject, predicate, object, None)
                            .map(|quad| {
                                let quad = quad?;
                                Ok(EncodedQuad::new(
                                    quad.subject,
                                    quad.predicate,
                                    quad.object,
                                    EncodedTerm::DefaultGraph,
                                ))
                            }),
                    )
                }
            } else if self
                .dataset
                .named
                .as_ref()
                .map_or(true, |d| d.contains(graph_name))
            {
                Box::new(self.store_encoded_quads_for_pattern(
                    subject,
                    predicate,
                    object,
                    Some(graph_name),
                ))
            } else {
                Box::new(empty())
            }
        } else if let Some(named_graphs) = &self.dataset.named {
            let iters = named_graphs
                .iter()
                .map(|graph_name| {
                    self.store_encoded_quads_for_pattern(
                        subject,
                        predicate,
                        object,
                        Some(graph_name),
                    )
                })
                .collect::<Vec<_>>();
            Box::new(iters.into_iter().flatten())
        } else {
            Box::new(
                self.store_encoded_quads_for_pattern(subject, predicate, object, None)
                    .filter(|quad| match quad {
                        Err(_) => true,
                        Ok(quad) => !quad.graph_name.is_default_graph(),
                    }),
            )
        }
    }

    pub fn encode_term<'a>(&self, term: impl Into<TermRef<'a>>) -> EncodedTerm {
        let term = term.into();
        let encoded = term.into();
        insert_term(term, &encoded, &mut |key, value| {
            self.insert_str(key, value);
            Ok(())
        })
        .unwrap();
        encoded
    }

    pub fn insert_str(&self, key: &StrHash, value: &str) {
        if let Entry::Vacant(e) = self.extra.borrow_mut().entry(*key) {
            if !matches!(self.reader.contains_str(key), Ok(true)) {
                e.insert(value.to_owned());
            }
        }
    }
}

impl StrLookup for DatasetView {
    fn get_str(&self, key: &StrHash) -> Result<Option<String>, StorageError> {
        Ok(if let Some(value) = self.extra.borrow().get(key) {
            Some(value.clone())
        } else {
            self.reader.get_str(key)?
        })
    }
}

struct EncodedDatasetSpec {
    default: Option<Vec<EncodedTerm>>,
    named: Option<Vec<EncodedTerm>>,
}